学科分类
/ 4
72 个结果
  • 简介:4由超市事务数据库发现关联规则的总体设计在现有的不少关联规则发现算法中,如何采用基于关联规则的数据挖掘技术发现超市事务数据库中的关联规则是本文所研究和探讨的重点,有必要采用快速算法从超市事务数据库中挖掘关联规则

  • 标签: 事务数据库 关联规则 挖掘关联
  • 简介:本文作者从实际应用出发,对现存数据挖掘决策树分类方法进行了研究,并应用到系统当中,实现了决策支持模块。关键词数掘挖掘;决策树算法;改进;实现中图分类号TP301.6文献标识码A文章编号1007-9599(2010)04-0000-02DataMiningDecisionTreeImprovement&ImplementationXiaYan,ZhouXiaohong,WangDong(ChangchunTechnologyCollege,Changchun130033,China)AbstractTheauthorstudiedonexistingDataMiningdecisiontreeclassificationmethodbasedonthepracticalapplication,andappliedtothesystem,achievedadecisionsupportmodule.KeywordsDataMining;Decisiontreealgorithm;Improve;Achieve随着数据库技术的不断发展及数据库管理系统的广泛应用,数据库中存储的数据量急剧增大,在大量的数据背后隐藏着许多重要的信息,如果能把这些信息从数据库中抽取出来,将会产生重要的作用。因此,数据挖掘涉及的学科领域逐渐扩大,数据挖掘的方法也在不断地改进和提高。分类在数据挖掘中是一项非常重要的任务,分类算法可以分为决策树分类算法、遗传算法、神经网络方法、K-最近邻分类算法等。这里,以疾病防控与儿童免疫管理系统中决策支持子系统的开发过程为例,对决策树分类算法的改进及在实际中的应用进行阐述。一、数据选取和数据预处理在本系统中,以预防接种中遇到异常反应后记录的“异常反应调查表”中的数据为例进行说明。具体实现过程详细说明首先输入训练集,由于在真实的SQLServer数据库当中,为了降低存储要求和减少存储时间,并非真正存储每个数据项的属性值,而是用存储数字来对应相应的意义,如在数据库的数据表中,“性别”字段中“1”代表“男”、“2”代表“女”,反应到程序页面时再映射回原来的值,为了说理清晰又限于篇幅,这里只将所有数据集中有代表性的十几组数据作为分类模型创建的输入训练集。表1判断是否需要计划外加强免疫的属性表儿童编号月龄出生状态常住地上次注射后反应是否需要计划外加强免疫0405102<=2正常产城市无不良反应否0405495<=2正常产农村无不良反应否0401342>5正常产城市无不良反应是04054352…5正常产城市轻度反应是04065342…5非正常产城市重度反应是04072342…5非正常产农村重度反应否0401544>5非正常产农村重度反应是0408519<=2正常产城市轻度反应否0404566<=2非正常产城市重度反应是04035472…5非正常产城市轻度反应是0401534<=2非正常产农村轻度反应是0405856>5正常产农村轻度反应是0409533>5非正常产城市无不良反应是04053442…5正常产农村轻度反应否二、生成决策树对训练集的每一个属性,计算其信息增益。以“月龄”属性为例,每个结点中的正反例的个数分别为[2,3]、3,2、4,0,分别计算如下info2,3==0.971;info3,2==0.971;info4,0=0;计算信息熵E(月龄)==0.693;计算该属性的信息增益量,选取信息增益最大的属性为节点,按该属性的值划分数据集合Gain(月龄)=Info(9,5)-E(月龄)=0.940-0.693=0.247;同理,对“注射反应”属性、“出生状态”属性、“常住地”属性都可计算每个结点的正反例的个数(由于篇幅有限,不作计算)。通过对各属性信息增益的计算结果,选择“月龄”属性作为根节点,然后划分“月龄<=2”的所有可能性。计算当“月龄<=2”时,“注射反应”、“出生状态”、“常住地”的信息增益值Gain(注射反应)=Info(2,3)-E(注射反应)=0.971-0.4=0.571;Gain(出生状态)=Info(2,3)-E(出生状态)=0.971-0=0.971;Gain(常住地)=Info(2,3)-E(常住地)=0.972-0.951=0.020;同理考虑“月龄>5”的情况,由于“月龄>5”时,各个节点都是纯节点,所以不再划分。三、产生决策规则遍历决策树,输出叶结点类属性值,用IF—THEN形式表达为IF(月龄2…5AND注射反应=无)THEN(类别=是)IF(月龄2…5AND注射反应=轻)THEN(类别=是)IF(月龄2…5AND注射反应=重AND出生状态=正常产)THEN(类别=是)IF(月龄2…5AND注射反应=重AND出生状态=非正常产AND常住地=城市)THEN(类别=否)IF(月龄2…5AND注射反应=重AND出生状态=非正常产AND常住地=农村)THEN(类别=是)……依此类推,共可产生十三条规则。四、决策支持子系统的分析用上述基于决策树的分类算法所得到的模型生成的规则来预测测试集中的未知数据属于哪一类,并通过该模型的测试结果与实际情况相吻合的准确率来判断该决策树是否有效。首先,用整个数据集中2/3的数据作为训练集按照基于决策树的分类算法来建立模型,生成一棵决策树。然后,用余下的1/3的数据作为测试集,通过创建的模型进行预测,并将预测结果和实际值进行比较。如果准确率达到或超过事先确定的阈值,则可以认定该模型对于数据分类是有效的,能够在实际中应用;反之,则认定该模型的分类效果不好,需要按以上步骤来重新判断,直到分类准确率达到预定的阈值为止。在本系统中,经过测试预测准确率已达到87%,在可以接受的范围内,所以算法是有效、可行的。参考文献1陈文伟,黄金才.数据仓库与数据挖掘.人民邮电出版社,20042王万森.人工智能原理及应用.电子工业出版社,20003范明,孟小峰.数据挖掘——概念与技术.机械工业出版社,2001作者简介夏琰(1980-),女,吉林长春人。长春职业技术学院信息技术分院,教师,讲师,硕士,研究方向为计算机应用。

  • 标签:
  • 简介:随着计算机网络技术的快速发展及大数据时代的到来,大数据技术在旅游行业中也得到了有效应用,智慧旅游成为旅游行业发展的一个主流趋势。大数据挖掘在智慧旅游建设推进中有着重要的作用,基于此,本文对大数据挖掘在智慧旅游中的应用进行了探讨,旨在提高大数据挖掘技术在旅游发展中的应用,促进智慧旅游的实现。

  • 标签: 大数据 挖掘 智慧旅游
  • 简介:大数据时代下,政府网络信息监管、企业运营决策等都需要对大量数据完成数据分析,从中抽取有用的知识和规则,但原始数据中又包含许多敏感性的信息,因此在数据挖掘的过程中要兼顾保护好用户的隐私信息。对隐私保护关键技术进行总结,对隐私保护算法进行研究和改进,为基于隐私保护的大数据挖掘开辟有效手段。

  • 标签: 隐私保护 大数据挖掘 算法
  • 简介:Web服务器日志记录用户访问该教学网站时每个页面的请求信息,可以根据用户访问的Web记录挖掘用户的兴趣关联规则,对Web服务器上的日志、用户信息等数据所开展的挖掘工作也属于Web数据挖掘的范畴

  • 标签: 中的应用 挖掘网络 日志挖掘
  • 简介:诸如医学、个人档案管理等领域中的数据挖掘截然不同于其它领域的数据挖掘,它的一个最大的特征就是涉及到人这个主体及其隐私问题,因此有着广泛的社会影响。通过从伦理、法律和社会的限制,主体记录的处理及相关算法、数据挖掘者的责任等方面的研究,提出私有数据挖掘中的个人隐私和社会影响问题及其解决办法。

  • 标签: 数据挖掘 数据算法 隐私
  • 简介:本文首先介绍了Web挖掘和电子学习(e—learning)&其在商业和教育中的应用,然后在WebCT学习环境中对学生成绩做了一个模式分类的预测实验,证明了Web挖掘可以成为构建e—learning知识的一种方法,具有改善学生学习模式的潜在作用。

  • 标签: E—learning(电子学习) WEB挖掘 课程管理系统(CMS) 数据挖掘 WEBCT
  • 简介:客户分类是银行必须面对的问题。对已有客户进行分类,有助于银行采取一些有针对性的提高客户价值的措施。该文在数据挖掘过程中,使用跨行业数据挖掘过程标准CRISP-DM。构建基于银行客户价值的分类挖掘模型。并在实例中说明其使用效果。

  • 标签: 银行客户价值 数据挖掘 模型构建
  • 简介:在信息化时代,数据是企业生产和运行的基础,其质量好坏直接影响着企业的生存和效益。Internet已经成为一个巨大的数据仓库,为了确保我们所利用的web文本资源的高质量,本文介绍了利用web内容离群点挖掘技术审查Web文本内容,提高数据质量的方法,并且取得了较好的实验结果。

  • 标签: 内容质量 数据挖掘 离群点 N-GRAM
  • 简介:摘要在信息化时代,数据是企业生产和运行的基础,其质量好坏直接影响着企业的生存和效益。Internet已经成为一个巨大的数据仓库,为了确保我们所利用的Web文本资源的高质量,本文介绍了利用Web内容离群点挖掘技术审查Web文本内容,提高数据质量的方法,并且取得了较好的实验结果。

  • 标签: 内容质量 数据挖掘 离群点 n-gram
  • 简介:数据挖掘是数据库常用技术之一,用其解决传统数据操控系统不足,可提现出计算机服务器的优越性能,摆脱早期用户处理数据流程的不足之处。为了充分体现数据挖掘技术应用优势,更好地服务于广大计算机用户。本文分析了数据挖掘技术现实作用,提出数据挖掘自动化控制技术特点,设计符合当代用户使用需求的自动化控制平台。

  • 标签: 数据挖掘 自动化 控制平台 设计
  • 简介:信息技术的发展推动了档案事业的发展,而数据挖掘技术在档案管理系统中的应用是为了提高档案利用率,实现档案服务的必然。本文从数据挖掘技术的相关内容入手,论述了数据挖掘技术的基础知识,并结合数据挖掘技术在档案管理系统中的具体应用进行了分析与探讨。

  • 标签: 数据挖掘技术 档案管理系统 档案事业
  • 简介:该模型挖掘历史飞行时间数据,为了解决传统的空气动力学模型在预测四维飞行轨迹上误差较大的问题,提出一种基于数据挖掘的预测模型

  • 标签: 挖掘飞行 数据挖掘 轨迹预测模型
  • 简介:3.6 企业交叉营销  交叉营销是指企业通过发现一位已有顾客的多种需求,3.4 客户信誉分析  企业开展网络营销后,  数据挖掘技术在企业市场营销中得到了比较普通的应用

  • 标签: 企业网络营销 技术企业 数据挖掘技术
  • 简介:最近数据挖掘技术也将关联规则用于分类问题,数据挖掘可分为概念描述、聚集发现、关联规则发现、分类发现、回归发现和序列模式发现等,3.1不同的挖掘任务使用不同的挖掘技术数据挖掘的任务是从数据中发现模式

  • 标签: 中正确 使用数据挖掘 数据挖掘技术
  • 简介:由于现在科学技术的迅猛发展以及人民生活水平的不断提升,互联网行业在悄无声息的进入大众的生活中,计算机也被应用在各行各业中。从社会网络到蛋白质交互网络等不同的领域产生了大量的数据,而图作为统计这些巨大数据的一个载体不仅能精确的描述出数据的属性,还能说明数据结构的特征,这些优势让以不确定图模型的数据挖掘算法在社会中得到广泛的应用。

  • 标签: 数据 挖掘算法 不确定图
  • 简介:本文首先讨论了数据挖掘技术,给出了一种企业决策系统。并就决策系统的构成、流程和采用的数据挖掘技术进行了探讨。关键词数据挖掘;数据仓库;企业决策系统中图分类号N37文献标识码A文章编号1007-9599(2010)04-0000-01ResearchofDataMiningTechnologyinBusinessDecision-makingSystemShiDongsheng(InnerMongoliaUniversity,Information&EngineeringTechnologyCollege,InnerMongolia,Baotou014010,China)AbstractThispaperdiscussesdataminingtechnology,presentsabusinessdecisionsystem.Decision-makingsystemoncomposition,processanduseofdataminingtechniquesarediscussed.KeywordsDatamining;Datawarehouse;Businessdecision-makingsystem随着计算机管理信息系统的飞速发展和广泛应用,企业生产经营的自动化水平不断提高,大大提高了工作效率。但企业业务系统运行所产生的大量原始数据是企业生产经营活动的真实记录,不能为本企业加以有效的统计、分析及评估,无法将这些数据转换成企业有用的信息、为企业战略决策提供参考和支持。数据挖掘正是在这样的应用需求环境下产生并迅速发展起来的,它的出现为智能地把海量数据转化为有用的信息和知识提供了新的思路和手段,设计开发基于数据挖掘的企业决策系统是合理解决这一问题,提升企业综合竞争力的最佳对策。一、数据挖掘技术数据挖掘,是指从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们不知道的、但又是潜在有用的信息和知识的过程。它是数据库研究中的一个新领域,融合了数据库、人工智能、机器学习、统计学等多个领域的理论和技术,把人们对数据的应用从低层次的查询,提升到从数据中挖掘知识,提供决策支持的层级。数据挖掘一般由数据准备、挖掘操作、结果表达和解释三个主要阶段组成。在数据准备阶段应集成多个运作数据源中的数据,解决语义模糊性、处理遗漏数据、清洗脏数据。挖掘阶段是一个假设产生、合成、修正和验证传播的过程,也是上述三个阶段的核心。结果表达和解释阶段根据最终用户的决策目的把提取的有用信息正确地表达出来。数据挖掘的方法和技术可大致划分为三类统计分析、知识发现、可视化技术等。统计分析用于检查异常形式的数据,然后利用统计模型和数学模型来解释这些数据,统计分析方法是目前最成熟的数据挖掘工具。而知识发现则着眼于发现大量数据记录中潜在的有用信息或新的知识,属于所谓“发现驱动”的数据挖掘技术途经。知识发现常用的方法有人工神经网络、决策树、遗传算法、模糊计算或模糊推理等。数据质量、可视化数据的能力、极大数据库尺寸、数据挖掘者的技能、数据的粒度都是影响知识发现方法的重要因素。可视化技术则采用直观的图形方式将信息模式、数据的关联或趋势呈现给决策者,决策者可以通过可视化技术交互式地分析数据关系。二、基于数据挖掘的企业决策系统数据挖掘面对的是经初步加工的数据,使得数据挖掘更专注于知识的发现;而数据仓库用于完成数据的收集、集成、存储、管理等工作,两者必须有机结合起来使用。基于数据挖掘的企业决策系统主要由数据库、数据仓库、数据仓库管理模块、知识库、知识发现模块、数据挖掘工具、人机交互模块构成(如下图所示)。系统的输入主要源于经过初步处理的数据库数据以及存储在知识库中的历史知识和经验;数据仓库管理模块用于数据仓库的建立以及数据的筛选操作;知识发现模块控制并管理知识发现过程,它将数据的输入和知识库中的信息用于驱动数据选择过程、知识发现引擎过程和发现的评价过程;人机交互模块通过自然语言处理和语义查询在用户和系统之间提供相互联系的集成界面。数据挖掘工具用于完成实际决策问题所需的各种查询检索工具、多维数据的联机分析分析工具等,以实现决策支持系统的各种要求。数据挖掘主要提供了以下几种模式(一)分类模式根据数据的值从树根开始搜索,沿着数据满足的分支往上走,直到树叶确定类别。(二)回归模式回归模式与分类模式相似,区别在于分类模式的预测值是离散的,而回归模式的预测值是连续的。(三)时间序列模式根据数据随时间变化的趋势预测将来的值。只有充分考虑时间因素,利用现有数据随时间变化的一系列的值,才能更好地预测将来的值。(四)聚类模式把数据划分到不同的组,组之间的差别尽可能大,组内的差别尽可能小,进行聚类前并不知道将要划分成几个组和什么样的组。(五)关联模式利用数据项之间的关联规则。(刘)和概念描述和比较操作把具有共同性的数据做汇总操作,从而得到一个具有一般性的规则描述。在实际应用中,可以根据具体情况采用不同模式组合,达到最优化的数据挖掘方式。在用户使用该系统时,首先需要通过分析决策需求,描述和表示决策的问题,确定数据来源,即可建立数据仓库;其次针对所要发现的任务的所属类别,设计或选择上述有效的数据挖掘算法并加以实现,从平凡的历史数据中提出综合数据,独立存储为库文件,作为更高一层数据挖掘对象;同时测试以评价所发现的知识,对知识进行一致性、效用性处理。最后根据最终用户的要求,建立适用于决策支持的数据仓库的集成界面和应用程序,使用户能在决策支持中运用所发现的知识。对于该系统的执行,每个步骤包含了循环和反复,可以对发现的知识不断求精、深化,并使其易于理解。三、结论总之,数据挖掘技术可以使其应用者由原来通过定期的、固定的报表进行定性的分析而上升到实时的、动态的各种形式的图表进行定量的分析,从而可以敏感地发现市场的微小变化并迅速做出反应,为企业在激烈的市场竞争中立于不败之地提供了强有力的工具。参考文献1范明,孟小峰.anjiawei,etal.数据挖掘概念与技术M.北京机械工业出版社,20072李捷.基于数据仓库和数据挖掘的企业决策支持系统研究J.科技经济市场,2006,73范丽霞,张雪兰.利用数据仓库和数据挖掘实现电信决策支持系统J.计算机与现代化,2005,8

  • 标签:
  • 简介:  使用数据挖掘技术进行交叉营销的分析一般是从分析现有客户的购买行为数据开始,基于数据挖掘的客户关系管理(CRM)可以最大限度地了解客户需求,客户关系管理的核心是客户价值管理

  • 标签: 中的应用 客户关系管理 技术客户关系