简介:AMultimediastreamsdynamicratecontrolalgorithmbasedonFuzzyadaptivePID(MFPID)hasbeenproposedtoimplementmultimediastreams'endsendingrateon-lineself-regulatingandsmoothing,andtotracksystemresourcesintime,sothatitcanavoidsystem'sregulatingoscillationandguaranteesystem'sstability.And,someworkhasbeendonetoanalyzeadaptivesessionmodelofmultimediastreams,toimplementfutureavailablebandwidthestimationofIPnetwork,toachievePIDparameters'on-lineself-tuningbyfuzzycontrolling.SimulationvalidatedthetheoreticalresultsofMFPID.
简介:ToovercometheshortcomingsoftheLeeimageenhancementalgorithmanditsimprovementbasedonthelogarithmicimageprocessing(LIP)model,thispaperproposeswhatwebelievetobeaneffectiveimageenhancementalgorithm.Thisalgorithmintroducesfuzzyentropy,makesfulluseofneighborhoodinformation,fuzzyinformationandhumanvisualcharacteristics.Toenhanceanimage,thispaperfirstcarriesoutthereasonablefuzzy-3partitionofitshistogramintothedarkregion,intermediateregionandbrightregion.Itthenextractsthestatisticalcharacteristicsofthethreeregionsandadaptivelyselectstheparameterαaccordingtothestatisticalcharacteristicsoftheimage’sgray-scalevalues.Italsoaddsausefulnonlineartransform,thusincreasingtheubiquityofthealgorithm.Finally,thecausesforthegray-scalevalueovercorrectionthatoccursinthetraditionalimageenhancementalgorithmsareanalyzedandtheirsolutionsareproposed.Thesimulationresultsshowthatourimageenhancementalgorithmcaneffectivelysuppressthenoiseofanimage,enhanceitscontrastandvisualeffect,sharpenitsedgeandadjustitsdynamicrange.
简介:Thispaperpresentsanewsolutiontotheimagesegmentationproblem,whichisbasedonfuzzy-neural-networkhybridsyste
简介:Anadaptivefuzzyslidingmodecontrol(AFSMC)approachisproposedforaroboticairship.First,themathematicalmodelofanairshipisderivedintheformofanonlinearcontrolsystem.Second,anAFSMCapproachisproposedtodesigntheattitudecontrolsystemofairship,andtheglobalstabilityoftheclosed-loopsystemisprovedbyusingtheLyapunovstabilitytheorem.Finally,simulationresultsverifytheeffectivenessandrobustnessoftheproposedcontrolapproachinthepresenceofmodeluncertaintiesandexternaldisturbances.
简介:Inthispaper,afuzzyreasoningbasedtemporalerrorconcealmentmethodisproposed.ThebasictemporalerrorconcealmentisimplementedbyestimatingMotionVector(MV)ofthelostMacroBlock(MB)fromitsneighboringMVs.WhichMVisthemostproperoneisevaluatedbysomecriteria.Generally,twocriteriaarewidelyused,namelySideMatchDistortion(SMD)andSumofAbsoluteDifference(SAD)ofcorrespondingMV.However,eachcriterioncouldonlypartlydescribethestatusoflostblock.Toaccomplishthejudgementmoreaccurately,thetwomeasuresareconsideredtogether.ThusarefinedmeasurebasedonfuzzyreasoningisadoptedtobalancetheeffectsofSMDandSAD.TermsSMDandSADareregardedasfuzzyinputandtheterm‘similarity’asoutputtocompletefuzzyreasoning.ResultoffuzzyreasoningrepresentshowthetestedMVissimilartotheoriginalone.Andk-meansclusteringtechniqueisperformedtodefinethemembershipfunctionofinputfuzzysetsadaptively.Accordingtotheexperimentalresults,theconcealmentbasedonnewmeasureachievesbetterperformance.
简介:AnovelH_∞tracking-baseddecentralizedindirectadaptiveoutputfeedbackfuzzycontrollerforaclassofuncertainlarge-scalenonlinearsystemsisdeveloped.Byvirtueoftheproperfilteringoftheobservationerrordynamics,theobserver-baseddecentralizedindirectadaptivefuzzycontrolschemeispresentedforaclassoflarge-scalenonlinearsystemsusingthecombinationofH_∞trackingtechnique,afuzzyadaptiveobserverandfuzzyinferencesystems.Theoutputfeedbackandadaptationmechanismsarebothrobustandimplementableindeedowingtotheirfreedomfromtheunavailableobservationerrorvector.Allthesignalsoftheclosed-looplargescalesystemareguaranteedtostayuniformlyboundedandtheoutputerrorstakeonH_∞trackingperformance.Simulationresultssubstantiatetheeffectivenessoftheproposedscheme.
简介:Uncertainandhesitantinformation,widelyexistinginthereal-worldqualitativedecisionmakingproblems,bringsgreatchallengestodecisionmakers.Hesitantfuzzylinguistictermsets(HFLTSs),aneffectivelinguisticcomputationaltoolinmodelingandelicitingsuchinformation,havehencearousedmanyscholars’interestsandsomeextensionshavebeenintroducedrecently.However,thesemethodsarebasedonthediscretelinguistictermframeworkwiththelimitedexpressiondomain,whichactuallydepictqualitativeinformationusingseveralsinglevalues.Therefore,itishardtoensuretheintegrityofthesemanticsrepresentationandtheaccuracyofthecomputationresults.Todealwiththisproblem,asemanticsbasisframeworkcalledcompletelinguistictermset(CLTS)isdesigned,whichadoptsaseparationstructureoflinguisticscaleandexpressiondomain,enrichingsemanticsrepresentationofdecisionmakers.Onthisbasistheconceptoffuzzyintervallinguisticsets(FILSs)isputforwardthatemploystheintervallinguistictermwithprobabilitytoincreasetheflexibilityofelicitingandrepresentinguncertainandhesitantqualitativeinformation.Forpracticalapplications,afuzzyintervallinguistictechniquefororderpreferencebysimilaritytoidealsolution(FILTOPSIS)methodisdevelopedtodealwithmulti-attributegroupdecisionmaking(MAGDM)problems.Throughthecasesofmovieandenterpriseresourceplanning(ERP)systemselection,theeffectivenessandvalidityoftheproposedmethodareillustrated.
简介:Aimingtoreducethecomputationalcostsandconvergetoglobaloptimum,anovelmethodisproposedtosolvetheoptimizationofacostfunctionintheestimationofdirectionofarrival(DOA).Inthismethod,ageneticalgorithm(GA)andfuzzydiscreteparticleswarmoptimization(FDPSO)areappliedtooptimizethedirectionofarrivalandpowerparametersofthemodesimultaneously.Firstly,theGAalgorithmisappliedtomakethesolutionfallintotheglobalsearching.Secondly,theFDPSOmethodisutilizedtonarrowdownthesearchfield.InFDPSO,achaoticfactorandacrossovermethodareaddedtospeeduptheconvergence.Thisapproachhasbeendemonstratedthroughsomecomputationalsimulations.ItisshownthattheproposedalgorithmcanestimateboththeDOAandthepowersaccurately.Itismoreefficientthansomepresentmethods,suchastheNewton-likealgorithm,Akaikeinformationcritical(AIC),particleswarmoptimization(PSO),andgeneticalgorithmwithparticleswarmoptimization(GA-PSO).
简介:Anovelactivecontourmodelisproposed,whichincorporateslocalinformationdistributionsinafuzzyenergyfunctiontoeffectivelydealwiththeintensityinhomogeneity.Moreover,theproposedmodelisconvexwithrespecttothevariablewhichisusedforextractingthecontour.Thismakesthemodelindependentontheinitialconditionandsuitableforanautomaticsegmentation.Furthermore,theenergyfunctionisminimizedinacomputationallyefficientwaybycalculatingthefuzzyenergyalterationsdirectly.Experimentsarecarriedouttoprovetheperformanceoftheproposedmodeloversomeexistingmethods.Theobtainedresultsconfirmtheefficiencyofthemethod.
简介:Afuzzyparticleswarmoptimization(PSO)onthebasisofelitearchivingisproposedforsolvingmulti-objectiveoptimizationproblems.First,anewperturbationoperatorisdesigned,andtheconceptsoffuzzyglobalbestandfuzzypersonalbestaregivenonbasisofthenewoperator.Afterthat,particleupdatingequationsarerevisedonthebasisofthetwonewconceptstodiscouragetheprematureconvergenceandenlargethepotentialsearchspace;second,theelitearchivingtechniqueisusedduringtheprocessofevolution,namely,theeliteparticlesareintroducedintotheswarm,whereastheinferiorparticlesaredeleted.Therefore,thequalityoftheswarmisensured.Finally,theconvergenceofthisswarmisproved.TheexperimentalresultsshowthatthenondominatedsolutionsfoundbytheproposedalgorithmareuniformlydistributedandwidelyspreadalongtheParetofront.
简介:Themultipleattributedecisionmakingproblemsarestudied,inwhichtheinformationaboutattributeweightsispartlyknownandtheattributevaluestaketheformofintuitionisticfuzzynumbers.Theoperationallawsofintuitionisticfuzzynumbersareintroduced,andthescorefunctionandaccuracyfunctionarepresentedtocomparetheintuitionisticfuzzynumbers.Theintuitionisticfuzzyorderedweightedaveraging(IFOWA)operatorwhichisanextensionofthewell-knownorderedweightedaveraging(OWA)operatorisinvestigatedtoaggregatetheintuitionisticfuzzyinformation.Inordertodeterminetheweightsofintuitionisticfuzzyorderedweightedaveragingoperator,alineargoalprogrammingprocedureisproposedforlearningtheweightsfromdata.Finally,anexampleisillustratedtoverifytheeffectivenessandpracticabilityofthedevelopedmethod.
简介:Inthispaper,weproposeaknowledgediscoverymethodbasedonthefuzzysettheorytohelpelderswithplantcultivation.Initially,thefuzzysetsareconstructedbyusingthefeatureselectionandstatisticalintervalestimation.Themin-maxinferenceandthecenterofgravitydefuzzificationmethodarethenusedtooutputacandidatepatternset.Finally,apatterndiscoveryisadoptedtoobtainthepatternsfromthecandidatesetforthecultivationsuggestionsbyconsideringthefrequencyweightanduser’sexperience.Inordertodemonstratetheperformanceofourmethodinplantingsystems,weconductaclicks-and-mortarcultivationplatform,namelyEdenGarden,fortheelderlylifestylesofhealthandsustainability(LOHAS).Theexperimentalresultsshowthattheaccuracyrateofourknowledgediscoverymethodcanreachupto85%.Moreover,theresultsoftheLOHASindexscaletablepresentthatthehappinessoftheeldersisincreasingwhiletheeldersareusingourproposedmethod.
简介:UnlikethepreviousresearchworksanalyzingthestabilityoftheT-S(Takagi?Sugeno)fuzzymodel,anextensiononthestabilityconditionofT-Sfuzzysystemswithadifferentstrategyisprovided.Inthestrategyanewvariable,whichisrelativetothegradeoffuzzymembershipfunction,isintroducedtothestabilityanalysisandanewstabilityconclusionisdeduced.Thedefinitionofstabilityconditioninthispaperisdifferentfrompreviousworks,thoughtheyaresimilarinform.Withtheproposedmethod,thesimulationinflightcontrollawshowsabettereffectiveness.
简介:Thispaperpresentsthedesignandimplementationofanenergymanagementsystem(EMS)withwavelettransformandfuzzycontrolforaresidentialmicro-grid.Thehybridsysteminthispaperconsistsofawindturbinegenerator,photovoltaic(PV)panels,anelectricvehicle(EV),andasupercapacitor(SC),whichisabletoconnectordisconnecttothemaingrid.Thecontrolstrategyisresponsibleforcompensatingthedifferencebetweenthegeneratedpowerbythewindandsolargeneratorsandthedemandedpowerbytheloads.Wavelettransformdecomposesthepowerdifferenceintoasmoothedcomponentandafastfluctuatedcomponent.Thecommandapproachusedforfuzzylogicrulesconsidersthestateofcharging(SOC)ofEV,renewableproduction,andtheloaddemandasparameters.Furthermore,thecommandrulesaredevelopedinordertoensureareliablegridwhentakingintoaccounttheEVbatteryprotectiontodecidetheoutputpoweroftheEV.ThemodelofthehybridsystemisdevelopedindetailunderMatlab/Simulinksoftwareenvironment.
简介:Anewapproachtoknowledgeacquisitioninincompleteinformationsystemwithfuzzydecisionsisproposed.Insuchincompleteinformationsystem,theuniverseofdiscourseisclassifiedbythemaximaltoleranceclasses,andfuzzyapproximationsaredefinedbasedonthem.Threetypesofrelativereductsofmaximaltoleranceclassesarethenproposed,andthreetypesoffuzzydecisionrulesbasedontheproposedattributedescriptionaredefined.ThejudgmenttheoremsandapproximationdiscernibilityfunctionswithrespecttothemarepresentedtocomputetherelativereductbyusingBooleanreasoningtechniques,fromwhichwecanderiveoptimalfuzzydecisionrulesfromthesystems.Atlast,threetypesofrelativereductsofthesystemandtheircomputingmethodsaregiven.