简介:地下断层深度的估算是重力解释难题之一,我们试利用支持向量分类(SvC)法进行计算。使用正演和非线性反演技术,通过相关误错使检测地下断层深度成为可能。但必要有一个深度初始猜测值,而且这猜测值通常不是由重力资料得。本文我们介绍以SVC作为利用重力数据估算断层深度的一种手段。在这项研究中,我们假设一种地下断层深度可归为一种类型,SVC作为一个分类算法。为了有效地利用此SVC算法,我们基于一个正确的特征选择算法去选择正确的深度特征。本次研究中我们建立了一套基于不同深度地下断层的合成重力剖面训练集,用以训练用于计算实际的地下断层深度的SVC代码。然后用其它合成重力剖面训练集测试我们训练的SVC代码,同时也用实际资料验证了我们的训练SVC代码。
简介:高分SAR数据的出现,为基于SAR的应用提供了新的途径.需要探索新的技术方法。SAR与光学影像各自的特点具有较强的互补性,二者的融合可以增强遥感数据的信息利用率。针对新的Cosmo—Skymed高分辨率SAR影像数据.利用增强Lee滤波抑制相干斑影响,在此基础上运用局部标准差融合策略的小波包变换方法.融合SAR和CBERS02多光谱影像,充分结合了各自影像的图像特征.使得在最大限度地保留光谱特性和细节特性的基础上.提高了数据的信噪比,更利于信息的提取。实验表明,经过Cosmo—Skymed与CBERS02数据的融合后的自动分类精度显著提高。分类Kappa系数从0.47提高到了0.93。