简介:针对一类混沌系统,研究了参数未知的混沌系统的广义同步.基于lyapunov稳定性定理和自适应控制方法,给出了自适应控制器和参数自适应律的解析表达式.将该方法应用于参数未知的新混沌系统,理论证明了该方法可以使新混沌系统达到渐近的广义同步,并且可以辨识出系统的未知参数.数值模拟进一步证明了该方法的有效性.
简介:提出了非线性保守系统周期运动的Hermite插值解法.该方法首先将时间转换为周期运动时间,由此系统的微分方程变为适用于Hermite插值的形式.与Qaisi提出的传统幂级数法不同,采用两点Hermite插值函数代替一点幂级数展开,保证了求解的收敛性及精度.使用Hermite插值解法给出了一类非线性振子的近似通解.研究表明,该近似通解不但可用于进一步分析振子的振动特性,且具有较高精度.
简介:本文中,我们讨论了含参量分数阶微分系统的基本分岔,即跨临界分岔、折叠分岔与音叉分岔.首先,根据分数阶Lyapunov方法,讨论了含参量分数阶微分系统的稳定性,并给出了这些基本分岔的相图.其次,根据Taylor展式与隐函数定理,研究了分数阶微分系统的规范形,从而求出这些基本分岔的拓扑规范形.
简介:研究了Lufie广义系统基于状态观测器的控制器设计问题.通过使用Lyapunov稳定性理论,线性矩阵不等式方法,分别给出了状态反馈控制器和观测器的设计方法,并建立了分离原理,进而得到了基于观测器的控制器设计方法.所得结论对广义系统理论本身的发展和实际应用都有非常重要的意义.最后给出了仿真实例.
简介:为分析竖向环境振动对人车路系统耦合振动的影响,人体采用并联动力模型,车辆采用7自由度全车模型,路面采用Kelvin地基上梁单元进行模拟,通过车路之间的动态轮胎力建立起考虑竖向环境振动作用的人车路耦合振动方程;运用New-mark积分法对方程组进行求解,采用人体竖向振动加速度均方根值对车辆乘坐舒适度进行评价;对地震波频率和地震波幅值对系统振动的影响进行讨论,以及车辆乘坐舒适度和乘坐者人体生理反应进行分析.数值分析结果表明:竖向环境振动加剧了人车路系统的振动,显著增大了车辆乘坐舒适度指标;地震波频率和地震波幅值对车辆乘坐舒适度的影响都很大.
简介:基于改进的KBM法,研究了强非线性多自由度自治系统的内共振.求出了极限环的振幅和近似解的表达式.与KBM法比较,该方法的特点是:近似解中包含项中的不再是时间的线性函数,而是时间的非线性函数,它能提高近似解的精度,且应用更广,最后给出一个具体实例,得到了近似解以及相图.和数值结果比较,本文方法具有较高的精度.
简介:考虑了高架索的倾斜角、货物悬挂点张力周期波动等因素的影响,建立了海上横向干货补给高架索系统面内振动的3自由度动力学模型.对模型进行1阶Galerkin模态截断,对离散后的动力学模型惯性项解耦,得到了高架索面内振动的3自由度常微分形式的非线动力学模型.借助Mathematica程序,对系统进行数值分析,研究表明货物摆动会引起高架索和货物大幅横向的振动.
简介:为了协调高速铁道车辆的运动稳定性与曲线通过性能之间的矛盾,本文采用多目标优化方法对一种高速铁道车辆的关键悬挂参数进行了优化处理.采用多体动力学技术建立了某型高速铁道车辆62个自由度的动力学模型,模型考虑了轮轨接触几何非线性、轮轨蠕滑非线性和阻尼非线性等.采用ADAMS—Matlab联合仿真对车辆悬挂系统进行参数化改造,使弹簧刚度和阻尼系数均可调.采用基于遗传算法的多目标优化方法对悬挂参数进行优化,使车辆模型能同时满足3种动力学指标.对比优化前后模型的动力学性能可以发现:模型的运动稳定性和曲线通过性能得到显著提高,虽然运行平稳性有小幅降低,但仍能保持在优良的工作状态.