学科分类
/ 1
18 个结果
  • 简介:提出一种解决大规模非负矩阵分解的分布式算法.非负矩阵分解一直是矩阵分解领域中的热点问题之一,已有一些相关的算法.但是,对于大规模的非负矩阵,至今尚无高效的方法.本文采用近来解决大数据的分布式思想和并行式计算方法,并将它们与传统的矩阵分解算法相结合,提出一种基于并行式计算的分布式网络算法,以此实现大规模的非负矩阵分解问题.实验结果表明,所提出的算法较一般的分布式算法与集中式矩阵分解的算法更加有效和快速.

  • 标签: 大规模非负矩阵 矩阵分解 分布式学习算法 并行式计算
  • 简介:绝热量热仪测试过程中,速率阈值检测方法存在抗干扰能力差及反应起始温度检测值波动较大的问题.文章在绝热量热仪(ARC)的“加热-等待-搜寻”模式下,提出运用温差变化量检测样品反应起始温度的策略.即通过对经典速率阈值检测方法存在的问题以及炉体控温热电偶与样品温度之间参比差值的分析,以参比差值与样品温度的关系构建温差基线并以此修正参比差值,修正后的参比差值的变化量用于衡量样品反应进程.实验结果表明,此动态温差检测方法相比于速率阈值检测方法,其抗干扰能力强,重复性良好,在同等控温精度的实验条件下,能够提前检测到样品的反应起始温度.

  • 标签: 绝热量热仪 温差基线 动态温差检测 反应起始温度
  • 简介:用非等温热重法研究了漆酚镍螯合高聚物的热分解反应动力学,结果表明漆酚镍螯合高聚物热分解过程是一级反应,用Ozaw-(I)法和Reich法求得的热分解反应平均活化能分别是173.21KJmol-1和181.12KJmol-1。

  • 标签: 漆酚镍螯合高聚物 非等温热重法 反应级数活化能
  • 简介:近年来,目标显著性检测引起了众多学者的极大关注,并涌出了一些基于低秩矩阵恢复理论的检测方法.在这些方法中,人们一般使用核范数约束低秩部分.但是,由于秩函数是非凸且不连续的,由此导致核范数不能很好地逼近秩函数,使得检测效果往往不佳.为解决上述问题,现提出基于加权Schatten-p范数与低秩树结构的稀疏分解模型.一方面,利用加权Schatten-p范数对图像背景进行低秩约束.另一方面,采用具有树结构稀疏特性的l2,1范数和图像拉普拉斯正则化对显著性目标进行稀疏约束,以此提高显著性检测精准度.经过与4种已有的常用显著性检测方法在3个不同数据库中的实验结果对比,证实现提出的方法具有更好的检测性能.

  • 标签: 目标显著性检测 矩阵分解 加权Schatten-p范数 树结构 拉普拉斯正则化
  • 简介:行人重识别在视频监控领域是一个非常具有挑战性的问题,不同的摄像头位置角度、光照等因素会使同一行人的图像差异较大.文章提出一种DGD(DomainGuidedDropout)卷积神经网络(CNN)与样本相对距离结合的行人重识别算法:首先,通过卷积神经网络来提取来自多个域的数据中具有一般性及鲁棒性的特征;其次,通过计算各个特征样本之间的相对距离来筛选出更具有一般性及鲁棒性的特征;最后,比较筛选出的特征间的欧氏距离进行重识别.实验结果表明,该算法能够提高行人重识别的效率.

  • 标签: 卷积神经网络 样本相对距离 欧氏距离
  • 简介:随着“互联网+”概念的普及,网络上的资源随之成倍增长.面对庞大的数据资源,传统的搜索引擎Baidu、Google等已经不能满足人们对于特定信息的获取需求.作为搜索引擎抓取数据的重要组成部分,网络爬虫的作用非常重要.本文主要介绍了网络爬虫的概念、组成模块以及工作流程,在通用爬虫的基础上提出一种聚焦型网络爬虫系统,以python和相应的第三方库为主要工具,通过定义采集函数和给定豆瓣网最新上映电影的网址,快速搜索该网址某电影的影评信息,对页面内链接和外链接进行有效爬取.然后,再对获取到的数据进行分词处理,根据关键词的出现频率生成词云.实验结果表明,该聚焦型爬虫系统能够将所有影评信息以JSON格式存储到本地,并通过词云直观的展示出来.

  • 标签: 搜索引擎 网络爬虫 Jieba分词 正则表达式 词云
  • 简介:行人检测在智能监控、自动驾驶、辅助驾驶、智能机器人等研究领域有着广泛的应用.传统的行人检测方法大多使用滑动窗口遍历图片的方式,导致计算量大,检测速度受到限制.目前基于深度学习的行人检测方法进入了一个快速的发展阶段,但是还存在例如小尺寸行人漏检等很多问题.现提出基于卷积神经网络的多尺度行人检测方法,分析了增加检测层、并联卷积层与改变卷积核尺寸对行人检测性能的影响.在KITTI数据集上的实验结果表明,该方法可以实现较好的行人检测效果.

  • 标签: 卷积神经网络 多尺度行人检测 增加检测层 并联卷积层
  • 简介:人脸关键点定位是计算机视觉的一部分,在人脸识别、人脸表情识别、人脸动作捕捉等工作中有重要的作用.非约束条件下人脸关键点定位,其难点在于人脸关键点位置在复杂环境下呈现非线性变化,影响人脸关键点定位的精准性.现提出基于级联卷积神经网络的人脸关键点定位方法,分析了级联深度模型全局回归阶段多尺度特征融合对人脸关键点定位的影响;同时提出了一种具有可学习参数的人脸关键点定位损失函数.经过大量实验表明,这里提出的人脸关键点定位算法能够有效的提高针对非约束条件下人脸关键点定位精确度.

  • 标签: 级联卷积神经网络 多尺度特征融合 人脸关键点定位 回归损失函数
  • 简介:软件定义网络(SDN)将数据层与控制层相分离,是一种新型网络体系架构.针对目前SDN网络还不能提供路由服务问题,设计了一种基于OpenFlow技术,使得SDN网络拥有路由转发功能的方案.依托RouteFlow平台,以内核虚拟化技术为基础,以Quagga软件为路由引擎,通过OpenFlow控制器为数据平面提供路由逻辑控制策略.实验结果表明,该方案不仅让SDN网络具有了路由转发功能,还能使系统保持较好的稳定性.

  • 标签: 软件定义网络 路由转发 OpenFlow技术 RouteFlow平台
  • 简介:针对深度信念网络无法科学有效地确定网络模型深度和隐层神经元数目等问题,根据贪心算法思想,提出了一种动态构建深度信念网络模型的新方法.即从底层逐层构建深度信念网络的过程中,根据验证集错误分类率调整当前层神经元数目,使当前模型达到最优后,固定当前层神经数目,网络深度增加一层;继续调整下一层神经元数目,直至整个模型构建完成.最后,根据重构误差微调各层神经元数目.结果表明,与依据重构误差构建的深度信念模型相比,利用此方法构建的深度信念网络模型的分类准确率更高.

  • 标签: 动态构建 深度信念网络 模型深度 神经元数目
  • 简介:针对在不同的摄像头场景下,光线、摄像头参数的差异较大使得行人重识别困难的问题,提出一种基于距离度量学习的方法进行行人重识别.该方法首先为每一对摄像头学习一个距离度量模型.其次,根据上述因素的影响强度为这些度量模型赋予相应的权值.最后,对度量模型与其相应权值的乘积进行累加与优化,得到最终的距离度量模型.经过在两个公共数据集中进行行人重识别实验,其结果显示所提出的方法能够提高行人重识别的正确率.

  • 标签: 人重识别 距离度量学习 摄像网络 核函数 正则项
  • 简介:单隐层前向神经网络的学习能力是有限的.特别地,作为分类器,单隐层前向神经网络对于图像的复杂信息和不同图像之间的细节信息很难学习和处理.文章借鉴深度神经网络的思想,将单隐层矩阵输入的神经网络拓展到多隐层神经网络,并采用传统的反向传播算法对其训练并给出学习算法.通过多个数据库的实验对比,结果显示所提出的算法具有良好的效果.

  • 标签: 神经网络 图像分类 深度学习
  • 简介:绘画作品的数字化对有效使用绘画资源具有重要意义,传统图像分类方法并未考虑绘画作品主观特性,且大部分特征需要人工提取,存在细节特征丢失等问题.在此提出基于卷积神经网络的绘画图像分类方法,分析了卷积核大小、卷积神经网络结构宽度、训练样本数量对分类结果的影响,以优化网络结构和参数.实验结果表明,该方法对绘画图像分类的有效性,在不同绘画图像数据集的分类实验上也得到了较好的分类结果.

  • 标签: 卷积神经网络 绘画图像分类 卷积核大小 网络结构宽度 训练样本数量
  • 简介:在此提出一种改进的深度卷积神经网络模型,该模型通过增加并联卷积层,拓展卷积神经网络宽度实现,有利于提取图像特征,提高网络性能;卷积层中对特征图像采用批量归一化方法进行预处理,加快网络训练.实验结果表明,该模型能更准确地学习宫颈癌细胞图像特征,从而有效降低了分类错误率.

  • 标签: 卷积神经网络 图像识别 宫颈癌细胞
  • 简介:传统的深度信念网络模型缺乏并行有效的算法来确定网络层数以及隐藏层神经元的数目,实验时大多依据经验来选取,这样做不仅使得模型训练困难,且范化能力差,影响实验结果.针对此问题,通过比较重构误差和验证集错误分类率的乘积(加权误差)大小来选取网络层数,网络层数确定后,再根据重构误差使用渐增法或二分法来选择合适的隐层神经元数目,以使整个模型达到最优.实验结果表明,用上述方法确定模型网络层数及隐藏层神经元数目,能有效提高模型分类或预测的精度.

  • 标签: 深度信念网络 网络层数 神经元数目 重构误差 加权误差
  • 简介:深度学习是人工智能领域发展的一个不可或缺的部分,并且广泛应用于图像识别方面.为了进一步降低宫颈癌细胞图像的识别错误率,本文提出了一种基于卷积神经网络的改进算法.该算法通过搭建卷积神经网络框架,对下采样过程中特征提取阶段的池化模型进行改进,在下采样过程中对池化域内的每个元素分配合适的权值得到下采样特征图.实验结果表明,我们所提出的基于卷积神经网络的改进算法降低了对宫颈癌细胞图像的识别错误率.

  • 标签: 池化 卷积神经网络 深度学习 宫颈细胞图像 图像识别
  • 简介:为有效降低宫颈癌细胞图像在图像识别中的假阴性率,在此提出一种改进的残差网络算法.该改进算法通过对交叉熵代价函数增加权重实现,根据不同病变程度的宫颈细胞建立权重矩阵,有针对地对假阴性类别的输出进行加权处理,优化分类输出、减少假阴性误判.实验结果表明,对于不同的宫颈细胞图像数据集,本改进算法输出分类效果稳定;与传统图像分类算法相比,改进后的交叉熵代价函数算法在识别分类宫颈细胞图像时,能有效降低宫颈癌细胞图像的假阴性率.

  • 标签: 残差网络 图像识别 交叉熵代价函数 宫颈癌细胞 假阴性率
  • 简介:为促进分析人员的技术交流,提高行业内仪器应用水平,第七届科学仪器网络原创作品大奖赛将于2014年7月1日正式拉开帷幕。本届大赛由仪器信息网主办,倡导“鼓励创新、积极分享、促进交流”的理念,挖掘原创精品,发现仪器人才。“原创大赛“至今已成功举办六届,参与人数近3000人,累计征集作品5300余篇。其中的优秀作品更在核心期刊刊登发表!深受业内用户的欢迎与支持,树立了良好的品牌活动形象。仪器厂商参与原创大赛,可以加强口碑宣传、促进公司品牌的提升、提高用户对产品的认知度和认可度。

  • 标签: 科学仪器 原创 作品 网络 技术交流 仪器信息网