简介:素质,是指个体在先天禀赋的基础上,通过环境和教育的影响所形成和发展起来的相对稳定的身心组织要素,结构及质量水平.既指人的个体素质,又指群体素质,具有内在性,稳定性,发展性,潜在性,整体效益性.全民的素质教育,着重于提高全民群体素质,注重于其整体效益性.一个人的数学素质,是指在先天的基础上,主要通过后天的学习所获得的数学观念、知识、能力的总称是一种稳定的心态.数学素质教育是指在数学教育中,充分尊重学生的主体性,注意挖掘其才能,培养学生具有上述数学素质,形成一个良好的数学头脑,学生学习主要在课堂,课堂引进素质教育是全面推进素质教育的关键.课堂进行数学素质教学必须具有以下两个特征:一是保障学生的主体
简介:设G(V,E)是简单连通图,T(G)为图G的所有顶点和边构成的集合,并设C是k-色集(k是正整数),若T(G)到C的映射f满足:对任意uv∈E(G),有f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),并且C(u)≠C(v),其中C(u)={f(u)}∪{f(uv)|uv∈E(G)}.那么称f为图G的邻点可区别E-全染色(简记为k-AVDETC),并称χ_(at)~e(G)=min{k|图G有k-邻点可区别E-全染色}为G的邻点可区别E-全色数.图G的中间图M(G)就是在G的每一个边上插入一个新的顶点,再把G上相邻边上的新的顶点相联得到的.探讨了路、圈、扇、星及轮的中间图的邻点可区别E-全染色,并给出了这些中间图的邻点可区别E-全色数.
简介:研究了超凸度量空间中非扩张映象不动点的逼近问题,得到了具误差的Ishikawa迭代序列收敛到不动点的一个充要条件.
简介:文章利用正规对偶映射的定义,给出了任意Banach空间Lipschitz强伪压缩映射不动点的Ishikawa迭代收敛定理.该定理不仅推广了已知结果,而且还简化了目前相应结果的证明.