简介:应用变分方法与Morse理论,本文讨论下面含有时滞的广义Hamilton系统的周期解,J^*du/dt=g(t,u(t-r1),…,u(t-rs))其中J^*是非奇异2n×2n反对称矩阵,在一定条件下,本文得到上述议程至少存在两个非平凡2π-周期解;而对于一般的微分系统,本文给出其具有变分结构的判定性准则。
简介:本文运用Liapunov函数方法,研究了一类四阶非线性微分方程的周期解,得到了存在唯一渐近稳定的周期解的充分条件。
简介:利用Mawhin的重合度理论,研究了一类具时滞的Liénard型方程的周期解的存在性,并举例说明了其应用.
简介:利用临界点理论研究具有部分周期位势的非自治常p-Laplace系统周期解的存在性.在具有p-线性增长非线性项时,根据广义鞍点定理,得到了系统多重周期解存在的充分条件.
简介:讨论了具有时滞和反馈控制的离散Leslie概周期捕食与被捕食系统.利用差分不等式和通过构造适当的Lyapunov函数,得到了系统持久性和全局吸引的充分条件.利用泛函概周期的壳理论,得到了系统存在唯一全局吸引概周期解的充分条件.
简介:本文研究了一类广义Liénard系统dx/dy=h[y-F(x)],dy/dt=-g(x)周期解的不存在性,得到了系统(1)具有多个奇点时不存在非平凡周期解的若干充分条件。
简介:本文首先建立了具有变时滞和分布时滞的Lotka-Volterra两种群脉冲合作系统.然后通过应用Gaines和Mawhin叠合度定理,研究得到了具有变时滞和分布时滞的Lotka-Volterra两种群脉冲合作系统正周期解存在性的充分条件.
简介:由于设备会随着使用时间的增加和自身寿命增长引起的退化而逐渐磨损失效进而发生故障.因此对于生产企业来说,想要提高自身竞争力,就要在生产过程中合理地安排预防性维护以减少设备故障导致的计划外停机,防止生产计划和生产线的中断,从而才能获取更多收益.本文从生产企业的角度出发,提出单机生产系统的非等周期不完美预防性维护与生产的联合优化策略,综合考虑生产价值、生产成本、生产延迟成本及各类维护成本等,构建了总利润率模型,目标是使总利润率最大化.其中涉及到的三类维护方式为(1)完美维护——即更换;(2)小修维护——即使设备“恢复如旧”;(3)不完美预防性维护——即使设备状态恢复到介于“完全如新”与“恢复如旧”之间的某状态.最后本论文通过数字实例,验证了新策略模型在实际生产应用中的有效性.
简介:旨在Banach空间中研究微分包含的周期边值问题(PBVP).假设F(t,u)仅满足弱Carathèodory条件,并不使用紧性条件,然而仍证明了该PBVP的唯一解能通过迭代序列的一致极限得到,并且还给出了解的误差估计.