学科分类
/ 5
93 个结果
  • 简介:利用临界点理论和变分方法,研究了一类带有脉冲效应的二阶周期边值问题,在较弱的条件下,得到了非平凡解的存在性.所得结论推广和改进了近期这方面的一些结果.

  • 标签: 周期边值 脉冲 变分方法 临界点理论 非平凡解
  • 简介:应用变分方法与Morse理论,本文讨论下面含有时滞的广义Hamilton系统的周期解,J^*du/dt=g(t,u(t-r1),…,u(t-rs))其中J^*是非奇异2n×2n反对称矩阵,在一定条件下,本文得到上述议程至少存在两个非平凡2π-周期解;而对于一般的微分系统,本文给出其具有变分结构的判定性准则。

  • 标签: 偏差变元 时滞微分方程 广义HAMILTON系统 存在性 周期解
  • 简介:在L^p(1〈P〈∞)空间上研究了板几何中具周期边界条件下各向异性、连续能量、非均匀介质的奇异迁移方程,证明了其相应的奇异迁移算子A产生C0半群V(t)(t≥0)和该半群的Dyson-Phillips展开式的二阶余项是紧的,并得到了该奇异迁移算子的谱在区域Г中仅由有限个具有限代数重数的离散本征值组成等结果.

  • 标签: 奇异迁移方程 周期边界条件 二阶余项 紧性 离散本征值
  • 简介:利用Mawhin的重合度理论,研究了一类具时滞的Liénard型方程的周期解的存在性,并举例说明了其应用.

  • 标签: 重合度 LIÉNARD型方程 周期解
  • 简介:利用渐近概周期函数的性质得到带梯度算子二阶方程的渐近概周期解在C(R^-)中的存在性.同时利用迭代法和线性常微分方程的概周期解的存在性和唯一性,得到R上此方程渐近概周期解的存在和唯一性.

  • 标签: 梯度算子 概周期解 渐近概周期解
  • 简介:讨论了一类中立型退化时滞微分方程的周期解的存在条件,并且给出了二维退化滞后微分方程的周期解的存在性问题,且给出了一个充要条件和两个充分条件,最后举例说明结论的有效性。

  • 标签: 中立型 退化时滞微分方程 周期解
  • 简介:利用临界点理论研究具有部分周期位势的非自治常p-Laplace系统周期解的存在性.在具有p-线性增长非线性项时,根据广义鞍点定理,得到了系统多重周期解存在的充分条件.

  • 标签: 常p—Laplace系统 周期解 临界点
  • 简介:讨论了具有时滞和反馈控制的离散Leslie概周期捕食与被捕食系统.利用差分不等式和通过构造适当的Lyapunov函数,得到了系统持久性和全局吸引的充分条件.利用泛函概周期的壳理论,得到了系统存在唯一全局吸引概周期解的充分条件.

  • 标签: 反馈控制 时滞 离散 LYAPUNOV函数 概周期解
  • 简介:考虑了一阶泛函差分方程Δx(n)=a(n)g(x(n))x(n)-λb(n)f(x(n-τ(n))),n∈Z正周期解的存在性.其中f,g∈C([0,∞),[0,∞)),λ为参数.运用不动点指数理论获得了上述问题正周期的存在性结果,所得结果推广了Raffoul的相关结果.

  • 标签: 差分方程 正周期解 存在性
  • 简介:本文首先建立了具有变时滞和分布时滞的Lotka-Volterra两种群脉冲合作系统.然后通过应用Gaines和Mawhin叠合度定理,研究得到了具有变时滞和分布时滞的Lotka-Volterra两种群脉冲合作系统正周期解存在性的充分条件.

  • 标签: Lotka-Volterra脉冲合作系统 叠合度定理 正周期解 时滞
  • 简介:研究具有周期修复函数的机器人与其连带的安全装置构成的系统的可靠性.运用泛函分析的方法,特别是Banach空间上的线性算子半群C0理论,证明了系统的适定性,并通过分析系统本质谱和经过扰动后半群的本质谱半径的变化,给出解的有限展开式。并进一步证明,O是系统的严格占优本征值,系统的非零本征值至多有两个,从而表明系统解以指数形式收敛.

  • 标签: 机器人 周期修复函数 严格占优本征值 本质谱 扰动 指数稳定性
  • 简介:考虑下列具多偏差变元的四阶p-Laplace方程:[φp(u″(t))]″+f(u(t))u′(t)+g(t,u(t-τ1(t)),u(t-τ2(t)),…,u(t-τn(t)))=e(t).利用重合度定理得出其周期解的存在性结论.

  • 标签: 周期解 重合度 偏差变元 LAPLACE方程
  • 简介:考虑了一类食饵在斑块环境中扩散具有脉冲和时滞的捕食系统,通过灵活地运用Gaines和Mawhin的连续拓扑度定理,获得了一系列易验证的正周期解存在的充分条件.

  • 标签: 捕食系统 时滞 脉冲 扩散 拓扑度
  • 简介:由于设备会随着使用时间的增加和自身寿命增长引起的退化而逐渐磨损失效进而发生故障.因此对于生产企业来说,想要提高自身竞争力,就要在生产过程中合理地安排预防性维护以减少设备故障导致的计划外停机,防止生产计划和生产线的中断,从而才能获取更多收益.本文从生产企业的角度出发,提出单机生产系统的非等周期不完美预防性维护与生产的联合优化策略,综合考虑生产价值、生产成本、生产延迟成本及各类维护成本等,构建了总利润率模型,目标是使总利润率最大化.其中涉及到的三类维护方式为(1)完美维护——即更换;(2)小修维护——即使设备“恢复如旧”;(3)不完美预防性维护——即使设备状态恢复到介于“完全如新”与“恢复如旧”之间的某状态.最后本论文通过数字实例,验证了新策略模型在实际生产应用中的有效性.

  • 标签: 单机生产系统 预防性维护 联合优化