简介:以广义Hamilton系统为基础,通过增加耗散量和外部输入,形成广义耗散Hamilton系统。通过配置广义耗散Hamilton系统的结构矩阵和外部输入,提出一个简单三维单平衡点系统来说明此类系统存在混沌行为。借助相图、庞加莱截面、Lyapunov指数谱、分形图和功率谱等数值分析方法说明当外部输入逐步增强时该系统存在周期轨道和混沌运动。与一般已知的三维混沌系统相比,该系统的特点为:耗散性与系统的状态变量相关;处于混沌状态时的系统的Lyapunov维数接近3。最后设计了该系统的实验电路,示波器观测到的实验结果进一步验证了该系统确实存在混沌行为。
简介:应用变分方法与Morse理论,本文讨论下面含有时滞的广义Hamilton系统的周期解,J^*du/dt=g(t,u(t-r1),…,u(t-rs))其中J^*是非奇异2n×2n反对称矩阵,在一定条件下,本文得到上述议程至少存在两个非平凡2π-周期解;而对于一般的微分系统,本文给出其具有变分结构的判定性准则。
简介:研究了本质线性非完整系统的Hamilton原理,分别应用与不应用Appell—Chetaev条件证明了本质线性非完整系统Hamilton变分泛函取驻值的充分必要条件.结果表明,在本质线性非完整系统中,Hamilton作用量是稳定的作用量,与完整系统的Hamilton原理具有相同的形式与本质;而且由Hamilton原理得到的运动方程不会导致任何力学与数学上的矛盾.最后给出了Hamilton原理向本质非线性非完整系统推广时产生数学与力学上不合理的根本原因。
简介:研究了二阶Hamilton系统z-L(t)z+Wz(t,z)=0多个同宿轨的存在性,其中L∈C(R,RN2)是一对称矩阵值函数,W(t,z)∈C1(R×RN,R)是非线性项.由于L(t)和W(t,z)关于t没有周期性假设,需要克服Sobolev嵌入缺乏紧性的困难.而且,这里非线性项W(t,z)关于z在无穷远处是渐进线性的且系统允许出现共振,这一情形之前未被考虑过.借助于广义的山路定理,得到了多个同宿轨.
简介:广义空间调制-多输入多输出(GSM-MIMO)模型中传输天线组合由传输的信息序列随机激活,即会产生传输天线信道性能不理想的情况,将大大削弱系统性能.同时,在检测时因对所有组合情况进行遍历使复杂度呈指数上升.结合索引思想提出了广义索引调制技术(generalizedindexmodulation,GIM),即在GSM系统的基础上将传输符号标记的索引与天线索引结合构造成新的传输符号,再利用天线选择算法传输.与GSM相比,解决了信道随机分配所带来的不良影,由于GIM构造符号的多样性传输速率有2比特以上的提高,同时接收端的检测复杂度在多天线时有50%的下降.广义索引调制更适用于衰落区分明显的传输信道.
简介:推导了最一般形式的Hamilton原理,讨论了它涉及的驻值问题,比较了不变分原理与变分原理的区别,从而得到表述变分原理的要点。
简介:提出广义斜梯度系统并研究Birkhoff系统的广义斜梯度表示.给出系统成为广义斜梯度系统的条件.利用广义斜梯度系统的性质来研究系统解的稳定性.举例说明结果的应用.
简介:对可积分的Hamilton系统,加上足够小的扰动,系统的不变环面所代表的规则运动在一定范围内都是可延拓的。但混沌轨道并不能直接通过可积极限的扰动来研究。与可积的极限处想对应的极限是反可积极限,在反可积极限处,系统处于完全混沌状态。在该极限处所有的混沌轨道都存在并且对足够小的扰动可延拓。
简介:用直接计算的方法对一类Hamilton系统的两个Abel积分比值的单调性进行讨论,指出该单词性条件可由两个判定函数直接确定.
简介:本文研究了一个广义Kolmogorov系统.这个系统包含了Gause型模型(Kuang和Freeman,1988),广义捕食者-被食者系统(Huang,1988,Huang和Merrill,1989)和其他许多系统(Liu和Zhao,2000,Zheng等,2001,Yang和Liang,2001)为其特例.有关该系统存在极限环的条件以及极限环唯一的条件在本文中已经证明.文献中的许多结果都可容易地作为本文定理的特例而导出.