简介:一、填空题(每小题3分,共30分)(1)我们已学过的因式分解的四种基本方法是:①,②,③,④.(2)9a2-( )=(3a+2)(3a-2)(3)4x2+( )+1=(2x-1)2(4)m3+8=(m+2)( )(5)ax2-a=a( )( )(6)a2x2-12ax+36=( )2(7)a(b-5)+3(5-b)=(b-5)( )(8)6x2+7xy-5y2=(2x-)(3x+)(9)4x2-20x+A是完全平方式,则A=.(10)计算:5022×25-4982×25=.二、选择题(每小题3分,共24分)(1)下列多项式能分解因式的是( ).(A)-4a2-b2
简介:Inthispaper,weinvestigatethecomplexoscillationofthedifferentialequationf''+B1f'+B0f=F1whtereB0,B1,F≠0areordermeromorphicfunctionshavingonlyfinitelymanypolesandtheorderofB1islargerthanthatofB0.Weobtainsomepreciseestimatesoftheorderofgrowthandoftheexponentofconvergenceofthezero-sequenceofsolutionsforthisequation.
简介:对含有动、静态背景的稳定图像处理时,对比了主成分追踪鲁棒主成分分析法(RPCA)、贝叶斯鲁棒主成分分析法(BayesianRPCA)和高斯混合模型的鲁棒主成分分析法(MoG-RPCA),3种方法对静态背景下的前景提取都较为完整.而动态背景下只有BayesianRPCA和MoG-RPCA提取出了完整的前景目标,但是BayesianRPCA计算速度很慢,且不能够处理复杂噪声.所以MoG-RPCA模型更具有对复杂噪声的适应性,动、静态背景情况下均提取出精度较高的前景目标,且具有较快的计算速度.当图像不稳定时,采用改进的MoG-RPCA模型对非稳定拍摄的抖动视频进行前景目标提取,并在第197帧抖动图像中清晰地提取出显著前景目标,且运算速度较快.在为了快速找到目标出现的帧时,对高斯混合模型背景差分法进行改进,利用K-means聚类算法快速得到聚类中心点,然后作为高斯混合模型背景更新时的初始化均值参数,从而提高在复杂场景下前景目标的检测精度.对于多角度追踪任务,不同角度、近似同一地点的多个监控视频图像中前景目标的提取,可采用跨摄像头视角跟踪结果融合的方法,然后对目标进行匹配.
简介:一、填空题(每小题3分,共30分)(1)因式分解的一般步骤是:首先观察能不能,然后考虑应用或法,项数为三项以上时,应当考虑.(2)多项式-5ab+15a2bx-35ab3y的公因式是.(3)18a3+1=(12a+1)( )(4)x2-( )+14=( )2(5)若a2+8ab+2m是一个完全平方式,则m=.(6)(x-4)2x+(4-x)2y=(x-4)2( )(7)分解因式x-y+x2-2xy+y2时,宜分为组,它们是.(8)已知mn=12,则(m+n)2-(m-n)2的值是.(9)2y2+3xy-5x2=(2y )(y )(10)x2-mx+ab=(x+a)(x+b),
简介:一、填空题(每小题4分,共32分)1.点(4,-3)关于原点的对称点坐标是.2.反比例函数y=k-2x的图象在二、四象限,那么k的取值范围是.3.一次函数的图象平行于y=3x且经过点(0,-4).那么它的解析式为.4.函数y=x+3+1x+1的自变量取值范围是.5.对于y=kx+(k-2),如果y随x的增大而增大,且它的图象与y轴交于负半轴.那么k的取值范围是.6.二次函数y=3(x+2)2-1当x时,y随x的增大而减小.7.二次函数的顶点坐标为(3,1)且它还经过点(2,-3)那么它的解析式为.8.如果点(a+b,ab)在第二象限.那么点(a,b)在第象限.二、单项选择题(每小题4分,共32