简介:摘要:风能相较于传统能源拥有着巨大的优势,但风电场投建初期数据不足的问题往往为研究人员所忽略。本文在研究 BP 神经网络的基础上,针对训练量不足的问题,提出了运用插值法对预测结果进行修正的方法,使得不同阶段的预测精度相较于传统神经网络有不同程度的提高,表明了本文方法的价值与意义。
简介:摘要:在事件不断变化的过程中电力负荷也会产生一定程度的变化,我们将这种情况下的某一个周期内的电网或者区域出现的一些最小或者最大负荷值称为这一统计期的最小负荷或者最大负荷。根据统计周期的不同可以将最大负荷分为年周期、月周期、日周期的最大负荷,而最小负荷也是分为面周期、月周期、日周期的最小负荷。而在电力负荷中平均负荷的概念指的就是某个周期之内负荷的平均值。在正常情况下我们对时间不断变化过程中电力负荷的波动规律用负荷曲线来进行表示,负荷曲线的主要功能是描某一个时间段内负荷在时间变化过程中的波动,曲线之中的横轴一般用来表示时间,而纵轴方向表示的一般为负荷的绝对值。在对负荷进行预测的过程中的准确性常常会受到很多因素的影响,而对这些影响因素进行有效的分析是保证电力负荷预测准确性的关键。
简介:摘要:在需要数控机床不停运转时,突发的停机事件是不可忍受的。例如在数控大赛过程中,突发的停机事件给工作过程增加了阻力。基于此,科研人员正在努力采取新的方法,来避免设备故障造成的各类损失和材料浪费。预测性维护 (PredictiveMaintenance,简称 PM)是“工业 4.0”提出的关键创新点之一。基于连续的测量和分析,预测性维护能够预测诸如机器零件剩余使用寿命等机关指标。关键的运行参数数据可以辅助决策,判断机器的运行状态,优化机器的维护时机。基于此,本文对数控机床的预测性维护进行研究,作出以下讨论仅供参考。 关键词:数控机床; 预测性维护;措施 引言