简介:商业及科研应用的小型卫星需要费用低的推进子系统。一般而言,这类推进系统仅用于通过反作用飞轮来完成轨道嵌入、轨道控制及姿态控制的飞行任务。这就允许贮箱采用简化的推进剂管理装置(PMD)。本文介绍这种推进剂管理装置的设计及研制方法。推进剂贮箱应该是具有较低费用的装置。它是利用叶片作为推进剂管理装置的全焊接钛结构,贮存30kg肼(N2H4)。这种推进剂管理装置没有活动件,毛细功能组件较少,因此,它能够确保贮箱重量轻,结构简单和费用较低。在低重力和推力室连续工作产生的低加速度条件下,这种叶片式表面张力贮箱能够提供所需要的不含气泡的推进剂。研制工作主要集中在叶片式管理装置,它的关键之处是性能及动态特性。由于重力作用,这种管理装置的主要困难是不能在地面进行试验。因此,必须通过模型及低重力试验来验证。建立稳态及瞬态模型,有助于模拟贮箱在不同流量及推力室工作产生的加速度、瞬态过程时的排液情况。依据相似准则,用中性浮力试验来模拟低重力环境。这种试验最大的好处是没有时间限制,所以能够完成一个完整的排液过程。模拟件设计要考虑模拟液与模拟件的接触角代表了氮/肼/钛的接触角。所有的分析及试验圆满完成,证明这种推进剂营理装置具有满意的性能。
简介:为测量压气机跨声叶栅表面压力场,选择美国ISSI公司的BinaryFIBPSP(压敏涂料),并根据涂料和跨声叶栅合理搭配相机和光源系统,对涂料进行标定。设计了两种不同的光路布局和拍照方案,获取了吸力面与压力面在多个攻角和马赫数下的试验数据。结果表明:对于压气机叶栅试验,打光和相机采取侧向布局效果更好。在0°攻角下,吸力面的吸力峰靠近前缘;随着攻角的变大,吸力面气流在靠近前缘很短距离完成加速和静压下降过程,然后沿弦长方向开始减速,压力面气流在叶片前缘附近很短距离内完成减速增压过程。当马赫数达到0.8时,叶栅通道出现了激波;随着进口马赫数的提高,叶片吸力面和压力面表面的静压值变小。
简介:性能精度是液体火箭发动机的一项重要指标,对于上面级发动机性能精度尤其重要。以某型泵压式上面级发动机为研究对象,利用影响分析树的方法识别了发动机生产、测试、性能调整过程中影响性能精度的干扰因素;针对所识别的干扰因素,通过仿真计算,得到了其偏差对发动机推力和混合比的影响。根据统计学原理,推导得到多项干扰因素影响概率的计算模型,并利用小子样样本对计算模型和程序的正确性进行了验证。利用该概率计算模型,根据置信水平要求,确定了多项干扰因素对发动机性能的极限偏差影响。根据发动机性能精度要求,分解得到了单个干扰因素的控制目标。
简介:根据二级箭体钝化处理的需要,小推力泵压式游动发动机需要在低入口压力下实现自身起动,进入稳态工作。在MWorks通用仿真平台的基础上,建立发动机起动过程系统仿真模型,通过试车数据验证了仿真模型的合理性。进一步分析了发动机的入口压力条件、主阀流阻以及环境压力对发动机起动过程的影响。结果表明:发动机能够实现自身起动,但起动过程较长;氧化剂的入口压力对发动机自身起动过程影响很大,氧化剂入口压力降低,涡轮泵起旋时间延迟明显,起动品质变差;降低发动机主阀流阻,能够使涡轮泵起旋时间提前,改善起动品质;环境压力降低使推进剂充填过程加快,涡轮泵起旋和工况爬升加快,有利于发动机的自身起动过程。
简介:22N双组元液体火箭发动机采用四氧化二氮和一甲基肼为推进剂,在这样小的发动机中认为产生一次切向不稳定燃烧是不可能的,因为,这需要有极高的振荡频率。1991年,一台22N火箭发动机在常规的验收试验中,遇到燃烧室被烧毁时,就否认了是高频不稳定引起的。由于缺乏高灵敏的测试仪器和基于高振荡频率的一次切向不稳定燃烧是不可能产生的认识,因此,进行了大量的故障原因分析工作。后来的研究结果证明,50000Hz频率左右的一次切向不稳定燃烧是能够出现的。而改变喷注器集液腔容积和应用亥姆霍兹谐振器,便能成功地消除这种类型的不稳定燃烧。
简介:针对某型流量调节器及泵压式供应系统,建立了描述其动态特性的频域分析模型,研究系统在出口压力扰动下的频率响应特性以及系统的固有稳定性.结果表明调节器在系统中的位置对系统高频范围内的频率特性影响很大.当供应系统总压降保持一定,增大出口局部流阻的压降能降低系统的谐振峰.当出口局部阻力较小,管路长度比例合适时,系统能够出现自发的不稳定.出口局部阻力越低,系统的总管路长度越大,则系统稳定性越差,不稳定的管路长度比例区间就越大.系统产生不稳定的机理是,在合适的管路长度比例下,调节器第二道节流口所分成的两截管路的声学频率相匹配,且流量调节器处于固有频率的压力波腹,滑阀始终受到频率一致、较大幅值的脉动压力的作用,使得滑阀在固有频率下产生明显的随动响应,对系统形成正反馈.在系统的阻尼耗散作用不足时,形成了耦合的不稳定系统.