简介:ItisprovedthattheChebyshevpolynomial_n(x)=T_n(xcosπ/2n),hasthegreatestuniformnormon[-1,1]ofitsthirdderivativeamongtherealpolynomialsofdegreeatmostn,whichareboundedby1in[-1,1]andvanishin-1and1.
简介:In1972,Fullerprovedthatacompleteadditivesubeategory_RCofR-Modisequivalenttoamodulecategory⊿-Modifandonlyif_RC=Gen(_RU)forsomequasiprogenerator_RUand⊿≌End_RUcanonically.Inthisnotetheauthorgivesacharacterizationof_RCwhichmakes_RUaprojectiveR-moduleinthecasewhenRisarightperfectringwithidentity,andshowsthatR-ModistheuniquecompleteadditivesubcategoryofR-ModwhichisequivalenttoR-ModforaleftArtinianringR.
简介:ThesolutionsofGreen'sfunctionaresignificantforsimplificationofproblemonatwo-phasesaturatedmedium.UsingtransformationofaxisymmetriccylindricalcoordinateandSommerfeld'sintegral,superpositionoftheinfluencefieldonafreesurface,authorsobtainedthesolutionsofatwo-phasesaturatedmediumsubjectedtoaconcentratedforceonthesemi-space.
简介:ForagraphG,P(G,λ)denotesthechromaticpolynomialofG.TwographsGandHaresaidtobechromaticallyequivalent,denotedbyG-H,ifP(G,λ)=p(H,λ).Let[G]={H|H-G}.If[G]={G},thenGissaidtobechromaticallyunique.Foracomplete5-partitegraphGwith5nvertices,defineθ(G)=(a(G,6)-2^n+1-2^n-1+5)/2n-2,wherea(G,6)denotesthenumberof6-independentpartitionsofG.Inthispaper,theauthorsshowthatθ(G)≥0anddetermineallgraphswithθ(G)=0,1,2,5/2,7/2,4,17/4.Byusingtheseresultsthechromaticityof5-partitegraphsoftheformG-Swithθ(G)=0,1,2,5/2,7/2,4,17/4isinvestigated,whereSisasetofedgesofG.Manynewchromaticallyunique5-partitegraphsareobtained.
简介:Thediscretizationsizeislimitedbythesamplingtheorem,andthelimitisonehalfofthewavelengthofthehighestfrequencyoftheproblem.However,onehalfofthewavelengthisanidealvalue.Ingeneral,thediscretizationsizethatcanensuretheaccuracyofthesimulationismuchsmallerthanthisvalueinthetraditionalfiniteelementmethod.Thepossiblereasonofthisphenomenonisanalyzedinthispaper,andanefficientmethodisgiventoimprovethesimulationaccuracy.
简介:ThisarticledescribesalocalerrorestimatorforGlimm'sschemeforhyperbolicsystemsofconservationlawsandusesittoreplacetheusualrandomchoiceinGlimm'sschemebyanoptimalchoice.Asaby-productofthelocalerrorestimator,theprocedureprovidesaglobalerrorestimatorthatisshownnumericallytobeaveryaccurateestimateoftheerrorinL1(R)foralltimes.Althoughthereispartialmathematicalevidencefortheerrorestimatorproposed,atthisstagetheerrorestimatormustbeconsideredad-hoc.Nonetheless,theerrorestimatorissimpletocompute,relativelyinexpensive,withoutadjustableparametersandatleastasaccurateasotherexistingerrorestimators.Numericalexperimentsin1-DforBurgers'equationandforEuler'ssystemareperformedtomeasuretheasymptoticaccuracyoftheresultingschemeandoftheerrorestimator.
简介:<正>InthepresentnotethealgebraicindependenceofvaluesofseveralMahlerserieswithcertainparticularanddifferentparametersatalgebraicpointsisestablishedbymeansofatypicalapproximationmethodhandlingtheLiouvilletypeseries.