简介:针对线性高斯系统的平滑问题,分析了RTS固定区间平滑与双滤波器固定区间平滑两种算法,提出了一种滤波存储数据更少的RTS平滑新算法.结合平面内的运动追踪问题,基于二维CWPA模型,仿真分析了卡尔曼滤波、RTS固定区间平滑以及双滤波器平滑算法的估计性能.仿真结果表明,两种固定区间平滑算法的估计效果等效,精度均优于卡尔曼滤波,对于实际问题中固定区间平滑算法的选用具有一定的参考价值.最后,结合双滤波器结构提出了一种基于双平滑器的舰载武器惯导传递对准精度评估方法,结果表明新方法相比于单一的平滑算法,可以获取更优的综合平滑性能,特别提升了水平姿态对准误差的平滑估计性能.
简介:圆锥误差和量化误差是激光捷联惯性导航系统姿态解算误差的两个最主要的误差源.从分析圆锥误差产生的机理出发,分别分析了以角度和角速度为计算参数的圆锥误差补偿算法,并对量化误差对圆锥误差补偿算法的影响进行了研究.通过理论分析和数字仿真,得出在实际工程应用中,采用角速度为输入信息的激光捷联惯性导航系统姿态算法应该在考虑量化误差的情况下,采用以角速度为计算参数的圆锥误差补偿算法.
简介:提出了一种基于期望模式修正(EMA)的改进交互式多模型(IMM)算法。该算法主要解决自主水下航行器(AUV)复杂工作环境下量测噪声统计特性未知或易发生变化时的状态估计问题,其核心思想是将期望模式修正机制和交互式多模型滤波算法相结合,利用状态估计过程中的获取的模型概率进行决策,得到更加接近与系统真实模式的期望模型集合,再通过期望模型集合滤波结果对固定模型集合滤波结果进行修正。与传统的交互式多模型算法相比,提出的基于期望模式修正的交互式多模型算法可以捕捉到系统模式更细微的变化。仿真结果表明,该算法可以大幅提高AUV组合导航系统的估计精度和稳定性。
简介:地形辅助导航是一种利用地形高度信息定位的导航技术,由于地形高度起伏是非线性的,因此地形辅助导航本质是非线性、非高斯贝叶斯后验概率估计问题。粒子滤波因为适合非线性、非高斯估计问题,被引入地形辅助导航领域得到广泛研究和应用,但粒子滤波算法存在粒子匮乏的问题,会影响定位精度。针对此问题,将高斯混合无迹粒子滤波(GMUPF)用于地形辅助导航,该算法用高斯混合模型(GMM)近似粒子分布,用无迹卡尔曼滤波(UKF)估计重要密度函数,不需要做重采样。通过用实际地形数据做飞行仿真实验,结果显示相比粒子滤波,不仅没有粒子匮乏问题,而且所用粒子数更少时估计精度略好。
简介:针对无陀螺或陀螺失效等情况下的飞行器姿态确定问题,基于无冗余姿态描述形式修正Rodrigues参数,提出了仅利用星敏感器矢量观测信息来确定飞行器姿态的UPF(UnscentedParticleFilter)算法。UPF利用UKF(UnscentedKalmanFilter)得到粒子滤波的重要性密度函数,从而克服了标准的粒子滤波没有考虑最新量测信息和UKF只能应用于噪声为高斯分布的不足。修正Rodrigues参数描述飞行器姿态具有简洁高效的特点,通过切换方法避免了奇异性现象。仿真结果表明,该姿态确定算法可以取得比UKF更快的滤波收敛性和更高的滤波精度,并且比四元数算法计算效率提高近10%。
简介:针对星敏感器地平仪联合自主定轨算法在工程中不易应用及工程应用中定轨精度较低等问题,提出了一种改进的自主定轨算法。第一,调整算法观测量,利用惯性坐标系下地心矢量替代星光角距值作为Kalman滤波方程的观测量,以适应卫星星敏感器标准输出;第二,在算法中加入敏感器误差处理环节,包括对敏感器的常值误差进行求取,从而实现对地心矢量测量值的修正,以及用抗野值方法对尖峰噪声误差进行处理,从而消除尖峰噪声对Kalman滤波定轨算法的影响;第三,采用无迹Kalman滤波算法将具有新的观测量与敏感器误差处理环节的改进的天文导航算法加以实现。通过某在轨中轨道卫星数据校验表明,改进后的自主定轨算法定轨精度在千米量级,可在工程中有效实施。
简介:惯导固有原因使得载体长时间航行累积大量误差.可通过重力梯度量测与惯导组合导航方法来修正导航误差.先对重力梯度仪与惯导组合导航原理进行阐述,提出重力梯度仪辅助INS(GAINS)的系统框架图,对导航用重力梯度图和重力梯度仪进行分析,设定组合量测方程.然后根据状态空间方程的特点,提出使用边缘Cubature粒子滤波(CPF)进行融合估值.通过理论方法证明其对方差的减小,同时给出算法流程.相同条件下与已有APO-PF算法仿真进行经纬度RMSE结果对比,表明该算法估值精度更高;并用CEP对导航误差研究,得到在性能较低的惯导条件下、在梯度仪1E2和10E2噪声下4h的CEP数值分别为0.044nmile和0.072nmile的结果.最后对状态方程简化,定性分析出其余状态量的估值效果.
简介:从模式识别的角度分析了搜索模式下水下运载体的重力匹配问题,利用模式识别神经网络实现重力匹配定位。在重力图匹配时,以惯性导航仪指示位置为中心规划真实位置的网格点搜索范围,从参考重力图上提取相应一系列的重力数据,与对应网格点的位置一起定义成多个模式类,构造相应的模式识别概率神经网络,运用该神经网络将实时重力测量数据识别到某个模式类,对比模式类的定义确定载体位置。在实测重力图上对重力辅助惯性导航系统进行了计算机仿真研究。结果表明,在重力场特征显著区域该重力匹配算法能够有效减小厄特弗斯效应的影响,其导航系统定位误差小于一个重力图网格,匹配率在80%以上,匹配效果优于一般的相关匹配算法。