简介:针对多目标0-1规划问题,首先基于元胞自动机原理和人工狼群智能算法,提出一种元胞狼群优化算法,该算法将元胞机的演化规则与嚎叫信息素更新规则、人工狼群更新规则进行组合,采用元胞及其邻居来增强搜索过程的多样性和分布性,使人工头狼在元胞空间搜索的过程中,增强了人工狼群算法的全局搜索能力,并获得更多的全局非劣解;其次结合多目标0-1规划模型对元胞狼群算法进行了详细的数学描述,定义了人工狼群搜索空间、移动算子、元胞演化规则和非劣解集更新规则,并给出了元胞狼群算法的具体实现步骤;最后通过MATLAB软件对3个典型的多目标0—1规划问题算例进行解算,并将解算结果与其它人工智能算法的结果进行比较,结果表明:元胞狼群算法在多目标0-1规划问题求解方面可获得更多的非劣解集和更优的非劣解,并具有较快的收敛速度和较好的全局寻优能力。
简介:为了解决M/M/c模型在实际运用中模拟精度不高及使用范围有限的问题,本文立足系统状态变化与输入率和服务率的关系,通过引入输入概率和服务度,构建依赖系统状态的递进式输入率和服务率。递进式输入率和服务率通过研究系统实际运行状况设定临界值,其中输入率分为两阶段,服务率分为三阶段。此外,结合递进式输入率和服务率及排队论状态转移过程构建了递进式M/M/c模型,并采用后确定法确定模型参数。递进式M/M/c模型是M/M/c模型的扩展形式,提高了M/M/e模型的模拟精度,在一定程度上拓展了模型的应用范围。最后,通过一个生活实例验证了递进式M/M/c模型的优化性和实用性。