简介:针对多目标0-1规划问题,首先基于元胞自动机原理和人工狼群智能算法,提出一种元胞狼群优化算法,该算法将元胞机的演化规则与嚎叫信息素更新规则、人工狼群更新规则进行组合,采用元胞及其邻居来增强搜索过程的多样性和分布性,使人工头狼在元胞空间搜索的过程中,增强了人工狼群算法的全局搜索能力,并获得更多的全局非劣解;其次结合多目标0-1规划模型对元胞狼群算法进行了详细的数学描述,定义了人工狼群搜索空间、移动算子、元胞演化规则和非劣解集更新规则,并给出了元胞狼群算法的具体实现步骤;最后通过MATLAB软件对3个典型的多目标0—1规划问题算例进行解算,并将解算结果与其它人工智能算法的结果进行比较,结果表明:元胞狼群算法在多目标0-1规划问题求解方面可获得更多的非劣解集和更优的非劣解,并具有较快的收敛速度和较好的全局寻优能力。
简介:随着工业化、城镇化进程的不断加快,我国电力需求量将持续上升。电力的充足供应是我国经济稳步发展的重要保证,故合理准确的对电力需求进行分析及预测具有重要的现实意义。基于此,分析我国电力需求现状,利用通径分析筛选电力消费需求的核心驱动因素。在模型选择的基础上,基于单变量(ETS、ARIMA模型)和多变量(情景分析)两个维度进行电力需求量分析及预测。结果表明:GDP每提高1%使得电力需求量提高0.5249%;工业化水平每提高1%使得电力需求量提高2.2146%,城镇化水平每提高1%使电力需求量相应提高1.0076%。“十二五”末中国电力消费需求量将近61425.96KW/h,2020年中国电力消费需求将近81410.10KW/h。
简介:本文通过将定性分析与关系图描述相结合,提出H1:城镇化对经济发展具有显著正向促进作用、H2:城镇化可通过消费渠道影响经济发展、H3:城镇化可通过投资渠道影响经济发展、H4:城镇化可通过出口渠道影响经济发展四项研究假设。进一步,根据地区实际经济发展水平,将我国划分为发达与欠发达两类地区。设定经济发展变量PGDP为被解释变量,城镇化变量UR、城镇化与投资交互项变量UR×PFI、城镇化与消费交互项变量UR×HC和城镇化与出口交互项变量UR×PE为被解释变量,采用2000—2012年我国31个省市区的面板数据。基于单位根检验、协整关系检验、F检验、Hausman检验,建立个体固定效应模型,验证假设H1~H4在全国及两类地区是否成立。结果表明:H1、H2、H3假设在全国及两类地区均成立;H4假设仅在欠发达地区成立。基于研究结论,本文提出了相应的启示。
简介:为了解决M/M/c模型在实际运用中模拟精度不高及使用范围有限的问题,本文立足系统状态变化与输入率和服务率的关系,通过引入输入概率和服务度,构建依赖系统状态的递进式输入率和服务率。递进式输入率和服务率通过研究系统实际运行状况设定临界值,其中输入率分为两阶段,服务率分为三阶段。此外,结合递进式输入率和服务率及排队论状态转移过程构建了递进式M/M/c模型,并采用后确定法确定模型参数。递进式M/M/c模型是M/M/c模型的扩展形式,提高了M/M/e模型的模拟精度,在一定程度上拓展了模型的应用范围。最后,通过一个生活实例验证了递进式M/M/c模型的优化性和实用性。
简介:本文运用协整分析、线性回归、logistic回归等定量分析方法,采用1973~2003年的历史数据,对安徽省农业生产资料价格波动与农业总产值的影响关系进行了深入的实证分析,发现了两者之间存在的一些内在联系和制约关系,并给出了反映两者关系的预测模型。