简介:一、填空题(每空3分,共33分)1.当x=时,分式|x|-2x-2的值为零.2.在分式nm中,当时,分式无意义,当时,分式的值为零.3.约分14a5b363ab4c=.4.若a-1a=1,则a2+a-2=.5.若a-bb=23,则ab=.6.当x时,代数式2x-3-1x+2+3x2+1有意义.7.如果1x-3+1=ax-3会产生增根,那么a的值应是.8.若分式x-32x+1的值为负,则x的取值范围为.9.(ba+ab)x=ab-ba-2x (a+b≠0),则x=.10.化简1+11-11+1x=.二、选择题(每小题4分,共32分)1.分式|m+n|m+n的值是( ).(A)1 (B)-1 (C
简介:(满分100分,90分钟完成),(A)基础知识达标检测一、选择题(每小题4分,共40分)1.如图8—3,AB/CD,.IIN分别交tB、∽于’f、~,c,’乎分z。(:八£,么1=120",01lj么2=().(,{)60*(启)50*(0)40)(D)30*2.任何一个三角形的个内角中至少有().(jI)一个街大,‘60)(B)两个锐角(c)个钝角(D)一个直角3.△4BC中~/l、/B、么C的度数比是1:2:3.那么AjtBC是(1.(4)等腰三角形(B)锐角三角形(C)直自三角形【口)钝角三角形4。如果一仑多曲形的内角和等于篼咿,那么这个多边彤是(
简介:(满分100分,90分钟完成)(A)基础知i只达标检测一、选择题(每小题4分,共40分)1.点M(x,,·)的坐标满足”:0,则吖在().(-4)纵轴上(B)横轴上(c)纵轴或横轴上(D)、三象限角f分线IJ2.下列函数中,白变世x的取值范围为r>一!的是().㈡H=,/x+2(引一愚(C),一_圭(D)、=lv/x一2。f2一x3.拖拉机玎始1一作时.油箱中有油24升.如果.-每小时耗油4冲,)jI;幺油销中剩余油世、(升)与ll_作时fq】。(时)之问的函数天糸式是().【1)1:4x一24(0≤^≤6)(B)、:一24+4x(fj)、=24—4_
简介:一、填空题(每小题3分,共30分)(1)我们已学过的因式分解的四种基本方法是:①,②,③,④.(2)9a2-( )=(3a+2)(3a-2)(3)4x2+( )+1=(2x-1)2(4)m3+8=(m+2)( )(5)ax2-a=a( )( )(6)a2x2-12ax+36=( )2(7)a(b-5)+3(5-b)=(b-5)( )(8)6x2+7xy-5y2=(2x-)(3x+)(9)4x2-20x+A是完全平方式,则A=.(10)计算:5022×25-4982×25=.二、选择题(每小题3分,共24分)(1)下列多项式能分解因式的是( ).(A)-4a2-b2
简介:一、填空题(每小题3分,共30分)(1)因式分解的一般步骤是:首先观察能不能,然后考虑应用或法,项数为三项以上时,应当考虑.(2)多项式-5ab+15a2bx-35ab3y的公因式是.(3)18a3+1=(12a+1)( )(4)x2-( )+14=( )2(5)若a2+8ab+2m是一个完全平方式,则m=.(6)(x-4)2x+(4-x)2y=(x-4)2( )(7)分解因式x-y+x2-2xy+y2时,宜分为组,它们是.(8)已知mn=12,则(m+n)2-(m-n)2的值是.(9)2y2+3xy-5x2=(2y )(y )(10)x2-mx+ab=(x+a)(x+b),
简介:考虑ATM交易过程当中产生的一系列参数,如交易量、交易成功率和响应时间等,对交易状态特征进行分析并建立了异常检测模型。针对成功率与响应时间2个参数,利用聚类算法将数据点划分为正常点、疑似异常点、异常点3大类。对于疑似的异常点,再根据其时间序列周围点的分布情况确定是否确实为异常点;对于交易量参数,首先通过LOF局部离群因子对离群点进行识别,再结合交易量随时间的移动均线及标准差加以辅助筛选,得到初步的疑似异常点,进一步通过与不同天同一时刻数据进行比较,最终确定是否为异常点。根据上述模型,本文将异常情况划分为3个预警等级,并对重大故障情况进行预测。
简介:[单元目标检测]代数初步知识目标检测1.∨∨∨∨∨;∨∨∨.二、1.6a2cm2,a3cm3;2.8cm;3.x(20-x)cm2;4.y与x的平方差与x、y的积.的商5.0;6.1,(可根据条件求得x=1,y=2);7.a=1;8.48x=1200.三、1.5(a3-b3)-9,2.12(2x-y2)3.3n+1和3n+2,4.(1+4.1×12‰)a,5.1(1a+1b);6.2S(Sx+Sy)千米时,7.(1+10%)(1-5%)a吨,8.n-n4-(n4-5)四、1.x=11;2.x=3;3.x=36;4.x=4.五、1.代数式的值为219,2.原式=3×4-12(