学科分类
/ 5
86 个结果
  • 简介:解题是数学学习的核心著名数学家波利亚在《怎样解题》中给出了解决数学问题的四个阶段:弄清问题——拟订计划——实现计划——回顾,其中“回顾”就是解题后的反思,它是解题思维过程中的深化与提高.

  • 标签: 解题过程 思维品质 培养 数学问题 数学学习 思维过程
  • 简介:宝钢推行标准成本管理制度以来,成本管理的重心转移到了作业区,作业长从以往只管生产、质量转到还必须管现场成本上来。随之,财务人员在成本管理方面扮演了越来越重要的角色,成为降低现场成本的组织者。财务人员构建成本网络,制定成本管理推进的进度、计划,负责培训作业长成本知识和宣

  • 标签: 现场成本 财务人员 作业长 成本管理 组织者 作业区
  • 简介:利用最小二乘法进行线性数据拟合在一定条件下存在着误差较大的缺陷,为使线性数据拟合方法在科学实验和工程实践中能够更加准确地求解量与量之间的关系表达式,本文通过对常用线性数据拟合方法——最小二乘法进行了误差分析,并在此基础上提出了最小距离平方和法以对最小二乘法作改进处理.最后,通过举例分析对两种线性数据拟合方法的优劣加以讨论并分别给出其较为合理的应用控制条件.

  • 标签: 数据拟合 最小二乘法 误差分析 最小距离平方和法 线性相关
  • 简介:《普通高中数学课程标准(2017年版)》强调:由于数学高度抽象的特点,要注重体现基本概念的来龙去脉.在教学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中理解概念的本质.

  • 标签: 数学概念 数学课程标准 普通高中
  • 简介:高等数学——重要而难学的基础课,非数学专业的理工科大学生往往这么认为。确实,数学,由于本身的抽象,使许多学生感到难以理解。特别是近年来基础课时的压缩,课堂上教师不得不放“快镜头”,学生就更感到压力大,甚至考试难以过关。

  • 标签: 传统教法 数学教学 微元法 解题能力 非数学专业 习题课
  • 简介:蝙蝠算法是一种新型的智能优化算法,本文针对基本蝙蝠算法易陷入局部最优、过早处于停滞阶段等不足之处,在蝙蝠速度更新公式中引入了惯性权重,并采用权值动态递减的方式变换权重,更好地平衡了算法的全局搜索能力和局部搜索能力.通过求解一系列经典整数规划问题,并与已有算法进行比较,结果表明:改进的蝙蝠算法在一般整数规划问题的求解中具有较高的计算效率和精度,以及较强的全局搜索能力.

  • 标签: 蝙蝠算法 一般整数规划 惯性权重
  • 简介:作业车间调度是一类求解困难的组合优化问题,本文在考虑遗传算法早熟收敛问题和禁忌搜索法自适应优点的基础上,将遗传算法和禁忌搜索法相结合,提出了一种基于遗传和禁忌搜索的混合算法,并用实例对该算法进行了仿真研究.结果表明,该算法有很好的收敛精度,是可行的,与传统的算法相比较,有明显的优越性.

  • 标签: 作业车间调度 遗传算法 禁忌搜索算法
  • 简介:文章分析了传统BP学习方法的缺陷,给出了一种改进的学习方法,并用非线性函数tg△x和(e^△x-1)代替传统的线性函数△x进行网络学习和参数调整.仿真表明,该算法能有效克服网络陷入局部极小的困境,并大大提高收敛速度.

  • 标签: 学习方法 网络学习 文章分析 克服 传统 困境
  • 简介:本文讨论一类人寿保险的风险过程,其中保单到达服从齐次Poisson过程。而描述退保及索赔发生的计数过程分别为这一过程的q-稀疏与p-稀疏.对此模型给出其破产概率的具体上界,并与其它一类风险模型进行比较.

  • 标签: 破产问题 保单 退保 人寿保险 风险模型 破产概率
  • 简介:当生灭拟Q矩阵Q为全稳定或单瞬时时,Q过程的存在和构造问题已由Feller[1],杨向群[2]和唐令琪[3]解决,而当Q同时含有无穷多个瞬时态和无穷多个稳定态时,Q过程的存在和构造问题都变得十分困难。本文对“双无限”生灭拟Q矩阵,得到了生灭Q过程的存在定理。

  • 标签: 存在性 密度矩阵 生灭 构造问题 稳定态 瞬时态
  • 简介:利用平方凸函数与凸函数的关系,证明了平方凸函数单侧导数的存在性和单调性,建立了平方凸函数与其单侧导数的不等式关系.在此基础上,给出平方凸函数定积分已有下界的改进和新的下界.给出由平方凸函数Hermite-Hadamard型不等式生成的差值的估计.

  • 标签: 平方凸函数 Hermite-Hadamard型不等式 单侧导数
  • 简介:传统教学注重知识结论的传授,忽视知识获取的过程,导致培养出来的学生创新能力、实践能力弱.过程知识与人们的活动和观念之间具有更大的“亲和性”.因为它融人了个体特定数学活动场景中的特定心理体验,比结果知识鲜活,有生气,

  • 标签: 数学知识 教学探索 发生过程 传统教学 知识获取 创新能力
  • 简介:从展示数学思维过程谈数学教学马华,翟宇毅(西安电子科技大学,西安710071)高等数学是工科院校一门重要而难学的基础理论课,它不但为后继课程提供必需的基础知识,更重要的是,通过它的学习可以培养学生的能力,如逻辑推理能力、建立数学模型的能力、运算能力、...

  • 标签: MATHEMATICAL TEACHING THINKING PROCESS creativeness THINKING