简介:研究一类特征值问题及其应用.首先应用常微分方程理论讨论一类边值问题非平凡解的存在唯一性,并将该研究结果应用到一类弹性系统的镇定问题.得到了系统渐近稳定的充分条件.
简介:本文旨在给出Banach空间值Hardy—Lorentz鞅空间的共轭空间的完全刻画.首先,对B值鞅引入了一类新的广义Lipschitz鞅空间及“原子鞅”的概念;其次,对B值Hardy-Lorentz鞅空间建立了“原子鞅”的分解定理;最后,以此为工具证明了其共轭空间是广义Lipschitz鞅空间.所得结论将已有的相应结果由实值鞅推广到Banach空间值鞅的情况.
简介:在离散时间场合和不存在交易成本假设下,提出了期权定价的平均自融资极小方差规避策略,得到了含有残差风险的两值看涨期权价格满足的偏微分方程和相应的两值期权定价公式。通过用数值分析来比较新的期权定价模型与经典的期权定价模型,发现投资者的风险偏好和标度对期权定价有重要影响。由此说明,考虑残差风险对两值期权定价研究具有重要的理论和实际意义。
简介:利用锥上的不动点定理证明了二阶Nuemann特征值问题-u″+Mu=λa(t)f(u(t))m0≤t≤1u′(0)=u′(1)=0是的正解存在性结果.