简介:利用Logistic映射和一个超混沌系统产生一个复杂的混沌时间序列,对图像进行置乱操作,重新排列图像的各像素,再进行两轮扩散操作,得到一个新的基于Logistic映射和超混沌系统的图像加密方案,并进行仿真实验和性能测试。实验证明,该加密方案有较好的密码学特性,能够对抗统计分析攻击、差分攻击等。
简介:难忘的1997年正月既望(农历15),我的伴侣田秀英同志病情稍有好转。是夜月园风清,我俩依栏赏月索句。我拿来几本《齐鲁珠坛》交与她看,阅毕她兴致勃勃地说:“我看过许多珠坛刊物,都无过《齐鲁珠坛》,它有强大的生命力,是有发展前途的。从我的眼光看,一定会在2000年初,知名度将誉满海内。”我点头信然。沉思良久她接着说:“我知道我是不能同你跨过世纪了,是桩憾事。只希望2000年到来之时,把我所写的诗词与《情系珠坛》趣解十例送到该刊发表。那时正是庆贺创刊廿周年的日子以表我对珠坛的厚爱与敬意!”秀英的眼光是看准了。时值今日,我将这些失散的文稿加以整理,适逢《齐鲁珠坛》创刊廿周年的庆贺大典。将此文献于本刊及广大同仁,诗词为《沁园春》(献给珠坛)。迷宫十例均为《情系珠坛》。奇妙的是她的诗词中深蕴着解题的奥秘,以启人深思远达,将此猷于读者:沁园春情系珠坛(纪念本刊创刊廿周年有感)廿载风雨, 伟业光照千秋,热血育坛,赞闪光金牌智铸就。奇花独秀。拥千百英儒,欤《齐鲁珠坛》,共奋丕业。驰聘骅骝。努力践行,岱岳观澜,执著探求。浪击心头。菁菁绿...
简介:设函数φ和Ф是复平面单位圆盘D上的解析函数且φ(D)■D,则将加权复合算子定义为Wφ,Ф:f→Фf°φ.当1
简介:本文研究一类带有扰动且舍相依索赔的复合二项风险模型,考虑两种类型的索赔:主索赔和副索赔,主索赔以一定的概率引起副索赔且副索赔可能以一定的概率延迟到下一个时间段发生.通过引入辅助模型,利用递归等方法,得到了该模型下的Gerber--Shiu折现罚金函数和破产概率的明确表达式.最后给出了索赔额服从几何分布的数值模拟.
简介:设H是一实Hillber空间,K是H之一非空间凸子集,设(Ti)i=1^N是N个Lipschitz伪压缩映象使得F=∩i=1^NF(Ti)≠Ф,其中F(Ti)={x∈K:Tix=x}并且{αn}n=1∞,{βn}n=1^∞包含[O,1]是满足如下条件的实序列(i)∑n=1^∞(1-αn)^2=+∞;(ii)limn→∞(1-αn)=0;(iii)∑n=1^∞(1-βn)〈+∞;(iv)(1-αn)L^2〈1,arbitaryn≥1;(v)αn(1-βn)^2+αm[βn+L(1-βn)-]^2〈1,其中L≥1是{Ti}i=1^N的公共Lipschitz常数,对于x0∈K,设{xn}n=1^∞是由下列定义的复合隐格式迭代xN=αnxn-1+(1-αn)Tnyn,yn=βnxn+(1-βn)Tnxn,其中Tn=TnmodN,则(i)limn→∞||xn-p||存在,对于所有的p∈F;(ii)limn→∞d(xn,F)存在,其中d(xn,F)=infp∈F||xn-p||;(iii)limn→∞inf||xn-Tnxn||=0.本文的结果推广并且改进H—K.Xu和R.G.Ori在2001年的结果和Osilike在2004年的结果,并且在这篇文章中,主要的证明方法也不同与H—K.Xu和Osilike的方法.
简介:研究了超凸度量空间中非扩张映象不动点的逼近问题,得到了具误差的Ishikawa迭代序列收敛到不动点的一个充要条件.
简介:刻画加权Bergman空间Aα^2(Ω)上的加权复合算子Cφ,Ф的Schatten-p类.
简介:本文考虑索赔额与等待时间具有广义FGM相依结构的复合泊松过程,仿照文献[5]的方法,求出了其矩母函数的显式表达式,给出了其矩母函数的n阶导数的计算方法,并最终求出了其Esscher定价泛函.
简介:讨论了单位圆盘中p-Bloch空间到小q-Bloch空间的加权复合算子TФ,φ的有界性和紧性.主要得到以下结论:(i)TФ,φ是p-Bloch空间到小q-Bloch空间有界算子的充要条件;(ii)TФ,φ是p-Bloch空间到小q-Bloch空间紧算子的充要条件,同时也给出了几个推论.