简介:运用Hadmard反函数定理讨论了一类满足渐近非一致性条件的常微分方程组解的存在唯一性,推广了已有结果.
简介:在一致凸Banach空间上,研究了半紧的非扩张压缩映象||Tx-Ty||≤||x-y||的Ishikawa型的三重迭代序列的收敛性问题,建立并证明了带误差的Ishikawa三重迭代逼近收敛定理,从而独特的推广了Mann和Ishikawa迭代方法,改进和发展了文献[1]-[7]的主要结果.
简介:尊敬的各位朋友:大家好.无论您是自2012年2月创刊以来就关注我们的老朋友,还是刚刚知道这本杂志的新朋友,凡是读到这封信的朋友,请接受我们最诚挚的感谢.感谢您对杂志的关心、厚爱以及对编辑部工作的支持和帮助.感谢作者提供高质量的稿件,这是我们杂志旺盛生命力的根本保证。作者
简介:亲爱的同学,通过本章的学习,你将:1.经历从具体实例中认识图形的相似,探索相似图形的性质;了解线段的比、成比例线段;两个三角形相似的概念,探索两个三角形相似的条件,知道相似多边形的特征与性质;了解图形的位似,能利用位似将一个图形放大或缩小;通过典型实例去观察和认识现实生活中物体的相似,会利用图形的相似解决一些实际问题;认识并能在方格纸上建立适当的直角坐标系,在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标,能灵活运用不同的方式确定物体位置;学习用坐标的方法研究图形的运动变换,从中体会数与形间的关系。
简介:设M为S^n+1中紧致极小超曲面,Mp,n-p为Sn+1的Clifford极小超曲面,若Spec(M)=Spec(Mp,n-p)在一定条件下,我们可以得出M与Mp,n-p等距同构。