简介:数据同化方法可提高数值预报的时效性和准确性,且该方法已在水文领域得到应用,并得到快速发展。为了提高新安江模型径流模拟预报精度,采用集合卡尔曼滤波方法同化径流数据,对参数和状态变量进行同步校正估计。通过对三水源新安江模型进行理想条件下的数值实验,在同时考虑模型自身、模型参数以及观测数据的不确定性的情况下,分析了参数均值和方差改变、集合大小、同化参数的敏感性以及相关性分析对同化过程的影响。结果表明:集合卡尔曼滤波算法具有可行性,且参数均值越接近真值、方差适当增加,集合大小适中,同化参数敏感性较低以及参数与变量间相互独立时,能在一定程度上增加径流同化精度。该研究可为同类型参数同化估计提供一定参考依据。
简介:针对高光谱曲线中可能存在噪声以及传统半经验方法不能有效利用全部光谱信息的问题,提出了耦合Haar小波变换和偏最小二乘的水质遥感高光谱建模方法(HaarWT—PLS)。利用该方法,对在南四湖获取的实测高光谱数据经分解尺度为3的Haar小波变换后,将原始光谱数据压缩到47个特征变量;随后利用小波变换重构的光谱数据建立了悬浮物浓度和浊度的HaarwT—PLS反演模型,并进行了验证。结果表明:HaarWT—PLS反演悬浮物浓度和浊度精度较高,验证样本的均方根误差分别为25.05mg/L和20.10NTU,平均相对误差分别为20-36%和13.88%。通过和单波段模型、一阶微分模型和波段比值模型进行精度对比分析,本文建立的HaarWT—PLS模型反演悬浮物浓度和浊度具有较高的精度和更好的稳定性。
简介:针对LIDAR点云数据中建筑物和植被难以快速分类的问题,提出了应用FCM(FuzzyC-Mean)模糊聚类的方法对离散机载激光点云数据进行建筑物和植被分类的方法.首先针对机载点云数据的特点采用了平面投影的Delaunay构网方法进行点云的三角网重构,然后根据三角网的法向矢量信息的属性不同,利用FCM方法和改进的方位矩阵方法对其进行模糊聚类,进而实现建筑物和植被等不同属性的点云分类.该方法可快速将点云进行分类,且分类结果可用不同颜色进行空间显示.在此基础上,采用IDL(Interfacedescriptionlanguage)语言编制了三维激光点云可视化分类软件LIDARVIEW.并应用该软件对某区域的机载点云数据进行了分类实验.实验结果表明:(1)基于平面投影的Delaunay构网方法特别适合机载LIDAR点云数据的快速构网,且该方法构网速度快、效率高;(2)应用FCM模糊群聚的方法和改进的方位矩阵方法适用于机载LIDAR数据的植被和建筑物分类,分类速度快且效果好;(3)FCM模糊群聚方法对机载LIDAR数据的群聚分类结果可靠、合理,具有较强的通用性和推广性.