耦合小波变换和偏最小二乘的悬浮物浓度和浊度高光谱建模方法

(整期优先)网络出版时间:2015-03-13
/ 1
针对高光谱曲线中可能存在噪声以及传统半经验方法不能有效利用全部光谱信息的问题,提出了耦合Haar小波变换和偏最小二乘的水质遥感高光谱建模方法(HaarWT—PLS)。利用该方法,对在南四湖获取的实测高光谱数据经分解尺度为3的Haar小波变换后,将原始光谱数据压缩到47个特征变量;随后利用小波变换重构的光谱数据建立了悬浮物浓度和浊度的HaarwT—PLS反演模型,并进行了验证。结果表明:HaarWT—PLS反演悬浮物浓度和浊度精度较高,验证样本的均方根误差分别为25.05mg/L和20.10NTU,平均相对误差分别为20-36%和13.88%。通过和单波段模型、一阶微分模型和波段比值模型进行精度对比分析,本文建立的HaarWT—PLS模型反演悬浮物浓度和浊度具有较高的精度和更好的稳定性。