简介:提出了拟次酉阵、拟(反)次Hermite阵概念,研究了它们的性质及其相互间的关系,将正交矩阵广义Gayley分解推广到拟次酉阵上。
简介:(满分100分,90分钟完成)(/1)基础知识达标检测一、选择题(每小题4分,共40分)1.(,『1+I)x?+r,“一2+,『ii=0是关于r的一元二次方程,邶幺m的值是().({)r,j>一1(B),n>1(C)口‘≠一1(D),H≠02.方程x::x的根是().(1)()(B)l(c)2(D)0或13F列方程中,没有实数根的是().(4)!Y:一7x=0(B)5J!一7J+5=0t、C)!r?+3r一4=0(D)16,+9y=244.,f、等式Ⅲf。。’‘)’0的整数僻的个数足().L2x<5l{)1个(B)!个((j)3个(D)4个5.一啦!
简介:研究p-凸函数的一些新的性质及判别准则,并建立P-凸函数的Jensen型、Rado型及Hadamard型不等式.
简介:(满分100分,90分钟完成)(A)基础知识达标检测一、选择题(每小题4分,共40分)1.一1{的倒数是().(A)詈(引专(c)一了8(D)一i52.如果la1=一a,那么a的取值范围是().(A)a<0(B)a≤0(C)a>0(D)a≥03.化简√(I.4l一/2)j的结果是().(A)l(B)0(c)1.4l一√2(D)j!一1.414.汁算一2x·』!的结果是().(舢一』。(引一2x’(c)一4x!(D)2x。5.下列因式分解正确的是().(A)x!一5J+6=(_+I)(Y一6)-(B)x!)一”!+Ⅵ=U(1一J)(C)1一(“+6):=(1+n+b)(1n