简介:设(x*,y*)是以A=[aij]m×n为赢得矩阵G的对策解,则当局中人1,2各自独立地使用其最优策略x*=(x*1,x*2,…,xmn),y*=(y*1,y*2,…,y*n)时,局中人1的赢得期望为对策值v*=x*Ay*T.若局中人双方使用使得方差D(x*,y*)=∑∑(aij-v*)2x*iy*j达最小的对策解(x*,y*),则其赢得靠近v*的概率达到最大.以O记使方差达到最小的对策解的集合.若O满足(x(1),y(1)),(x(2),y(2))∈O蕴涵(x(1),y(2)),(x(2),y(1))∈O,则说O是可换的.本文首先证明了:若矩阵对策G有纯解,则O是可换的.然后证明了如果限定局中人1在其混合扩充策略集的一个非空紧凸子集X中选取策略,那么存在X的一个非空紧子集O(X),它是有限个非空互不相交紧凸集之并,使得只要局中人1使用O(X)中的策略,那么在最坏的情况下可以取得最好的赢得.
简介:直觉犹豫模糊集集成了直觉模糊集和犹豫模糊集的优势,能更有效地刻画决策者偏好不一致的情况。距离测度一直是研究的热点问题,但尚没有文献研究直觉犹豫模糊集间的距离测度,因此本文定义了直觉犹豫模糊集问的Hamming距离、Euclidean距离和广义距离,同时考虑每个元素的权重,定义了加权距离。犹豫度是直觉犹豫模糊集的重要特性,因此在考虑犹豫度的基础上,又定义了一些距离测度。这些距离测度不仅考虑了直觉犹豫模糊数间的差异,同时考虑了犹豫度的影响,决策者可以根据对直觉犹豫模糊数和犹豫度之间偏好的不同,设置不同的偏好值得到距离测度。然后基于这些距离测度,又提出了直觉犹豫模糊环境下的TOPSIS法。最后通过实例说明了所提出的TOPSIS法的合理性与实用性。