学科分类
/ 25
500 个结果
  • 简介:利用临界点理论研究具有部分周期位势的非自治常p-Laplace系统周期解的存在性.在具有p-线性增长非线性项时,根据广义鞍点定理,得到了系统多重周期解存在的充分条件.

  • 标签: 常p—Laplace系统 周期解 临界点
  • 简介:研究了一椭圆边值问题在球外部区域上正径向解的存在性,当非线性项f(u)关于u超线性或次线性增长的情形,获得了该问题正径向解的存在性.

  • 标签: 椭圆边值问题 球外部区域 正径向解
  • 简介:利用临界点理论中的山路引理,研究一分数阶Kirchhoff型方程在次临界增长条件下非平凡解的存在性,进一步统一和丰富了已有文献的相关结果.

  • 标签: Kirchhoff型方程 非局部椭圆算子 山路引理
  • 简介:本文提出了一Logistic时滞模型的随机离散形式,并对其进行了研究.首先,讨论了相对应的确定性离散模型的稳定解.其次,在一些简单的条件下,证明了随机离散Logistic方程的渐近稳定性.最后,利用数值仿真说明了主要结果.

  • 标签: 随机稳定 Logistic差分方程 时滞Lyapunov理论鞅收敛定理
  • 简介:考察一带幂次非线性项的Schrodinger方程的Dirichlet初边值问题,提出了一个有效的计算格式,其中时间方向上应用了一种守恒的二阶差分隐格式,空间方向上采用Legendre谱元法.对于时间半离散格式,证职了该格式具有能量守恒性质,并给出了L^2误差估计,对于全离散格式,应用不动点原理证明了数值解的存在唯一性,并给出了L^2误差估计.最后,通过数值试验验证了结果的可信性.

  • 标签: 非线性SCHRODINGER方程 Legendre谱元法 误差分析
  • 简介:利用概率度量空间中A—proper映射拓扑度的基本性质,在投影完备的Z—P—S空间中研究了非线性映射的不动点问题,得到了一些新的结果.

  • 标签: Z- P-S空间 A—proper映射 拓扑度 凸集
  • 简介:本文主要研究一无穷区间上分数阶边值问题的正解.通过构造特殊的Banach空间,运用Leray-Schauder非线性抉择得到了该边值问题至少存在一个正解以及运用Leggett-Williams不动点定理得到至少存在三个正解.

  • 标签: 分数阶微分方程 无穷区间 边值问题 不动点定理 正解
  • 简介:本文研究了一在边界附近为定强算子的变系数亚椭圆算子的亚椭圆性边值问题。首先讨论了一个半空间R~+_n中的变系数亚椭圆算子,当其在B~0_n附近是定强算子时,为保证半空间中的边值问题是亚椭圆性边值问题时边界算子的给法的一个充分条件,并证明在此条件下,当主算子有一个低阶项的摄动时仍为一亚椭圆性边值问题。进而,证明了R~+_n中的变系数亚椭圆算子,若它在R~0_n附近是定强的且关于D_n的系数是非零无穷次光滑函数,则其边值问题是亚椭圆性边值问题.

  • 标签: 半空间 边值问题 亚椭圆算子 亚椭圆性 摄动 变系数
  • 简介:本文在半序度量空间中引进了g-可比较算子和耦合不动点和9-不动点这些新概念,研究了9-可比较算子的g-耦合不动点或g-不动点存在性问题,得到了几个存在性定理.所得结论推广了最近一些文献中的主要结果.

  • 标签: 半序度量空间 g-可比较算子 g-耦合不动点 修改的距离函数
  • 简介:利用锥上的不动点定理,在非线性项f,g半正并允许下方可以无界的情形下研究了一非线性二阶边值问题u”+λf(t,u)+μg(t,u)=0,αu(0)-βu'(0)=0,γu(1)+δu’(1)=0,在非线性项f与g满足更广的同为超(次)线性和一个为超线性一个为次线性的情形下得到了边值问题的正解,推广,改进和统一了一些已知的结果.

  • 标签: 二阶边值问题 半正 正解
  • 简介:边形的教法与学法第1课梯形(一)一.教学目标:识记梯形及其有关概念,掌握梯形性质定理,渗透转化思想,培养论证能力。二.学法指导:(阅读教材P169-P172)1.细读教材P169识记梯形定义:一组对边,另一组对边的边形叫做梯形,其中平行的两边叫做...

  • 标签: 三角形中位线 平行四边形 等腰梯形 辅助线 对角线 变式题
  • 简介:如何把握好教学中的“度”,是科学,更是艺术.教学中的“度”主要指教学的进度、难度、深度、广度等,它由教材、学生、教师三方面的因素所决定,但教材的作用是最关键的.教材是依据课程标准系统地阐述学科内容的教学蓝本,是教学内容的具体化。也是教与学的依据.因此,要把握好教学中的“度”,就必须对教材进行深入的研究.新教材已经使用多年,下面笔者结合自己的数学教学实践,“度”高中数学新教材.

  • 标签: 高中数学 教材 教学内容 标准系统 教学实践
  • 简介:得到了激光等离子能量交换模型研究中的一反应--扩散方程组的本解的存在性。并通过引进光滑符号函数对解析解的性态进行了估计,为数值方法的误差分析提供了理论依据。

  • 标签: 总体解 反应扩散方程组 性态估计 存在性
  • 简介:研究了几种类型的高阶线性亚纯系数微分方程的亚纯解的增长性,对方程的亚纯解的增长率得到了精确估计.

  • 标签: 线性微分方程 亚纯函数 超级