简介:将Solodov和Svaiter于2000年发表的Errorboundsforproximalpointsubproblemsandassociatedinexactproximalpointalgorithms一文中提出的方法进行推广,得到2类近似邻近点算法.这2类算法都是预测校正方法,预测点满足相同的非精确准则,不同之处在于校正步的下降方向.为了使每次迭代产生的迭代点更加靠近解点,在校正步均采用了最优步长的技巧.在一定条件下,可以证明这2种邻近点算法是全局收敛的.并且,从理论上证明了采用算法2每一步所产生的下降量的下界大于算法1的,所以算法2比算法1能更快地收敛到解点.数值试验也表明了这一点.