简介:为研究子母弹在抛撒时的干扰流场特性,选取多舱段子母弹为计算模型,基于课题组自主开发的非结构混合网格Reynolds平均Navier-Stokes方程求解程序HUNS3D,结合非结构嵌套网格技术,耦合六自由度刚体运动学方程,使用了改进的4阶Adams预估-校正法求解六自由度刚体运动方程.利用跨声速下典型外挂物分离作为验证算例,仿真结果与实验结果高度拟合,验证了求解器的精度.对锁定母弹自由度和释放母弹的自由度两种计算状态进行数值模拟.仿真结果表明:由于激波干涉作用,子弹与母弹之间有较强的耦合作用;释放母弹自由度后,子弹的气动力参数发生了较大变化.
简介:利用压力传感器测量扑翼的瞬时力,利用数字粒子测速仪(digitalparticleimagevelocimetry,DPIV)系统测量扑翼的前缘涡以及周围的流场,来揭示前缘涡在不同间距下对扑翼平均推力的影响.实验在-个低Reynolds数循环水洞中进行,两串列扑翼均做二维正弦平动.在固定的相位差下,当间距增加时,后翅前缘涡对前翅的影响具有相似性,均提高或者均降低前翅的平均推力.前翅平均推力的提高是由于后翅的前缘涡提高了前翅尾部的射流速度以及有效攻角.随着间距的增加,后翅前缘涡对前翅的影响急剧下降,使得前翅的平均推力快速接近于单翼值.在固定的相位差下,当间距增加时,前翅的脱落涡对后翅的影响变化非常大,后翅的平均推力可能先升高后降低,这是因为间距改变了前翅脱落涡作用于后翅的时间点.当前翅脱落涡遇到后翅,并且和后翅的前缘涡有相同的旋转方向时,前翅的脱落涡会抑制后翅前缘涡的形成,并且后翅的有效攻角减小,其平均推力降低.如果这两个涡的旋转方向相反,那么后翅有效攻角就会增大,平均推力值就会提高.
简介:针对无阻尼惯导系统的误差特点,设计了适合航空应用的惯性(INS)/天文(CNS)/Doppler组合导航系统,建立了该组合导航系统卡尔曼滤波模型.仿真试验表明,该组合导航系统能为飞行体提供精确的导航信息.
简介:基于非结构/混合网格、耗散自适应2阶混合格式以及脱体涡模拟(detachededdysimulation,DES)方法开展了现代战斗机模型复杂分离流动的数值模拟,并与有限的平均气动力试验数据进行了对比,结果表明计算具有合理性,在此基础上进一步应用本征正交分解(properorthogonaldecomposition,POD)和动力学模态分解(dynamicmodedecomposition,DMD)方法对数值模拟流场的非定常特性进行了对比分析.研究表明飞行器背风区流场由一对边条涡的螺旋运动主导,旋涡破裂前在横向空间截面上流场是中性稳定的,同时主涡核的运动是多频耦合的.POD和DMD的对比分析则表明:两者模态配对的方式不同,但主要模态之间具有一定相关性;POD模态中包含多种频率的运动,而且能量较集中于主模态,流场重构效率更高;DMD则将流场的主要特征运动提取为一些单频模态的组合,同时能够给出模态的稳定性.
简介:为研究转捩与湍流对激波边界层干扰及底部流动结构的影响,文章选取了二维与三维高超声速双斜面进气道模型与大钝头着陆器模型,并使用γ-Reθ转捩模型开展数值模拟研究.研究表明,对于二维进气道模型,随着前缘钝度的增加,激波边界层干扰位置前移,分离区变大,与层流流动情况相比,有转捩流动发生时,激波边界层干扰位置后移,同时分离流动强度变弱,分离区缩小;对于三维进气道模型,其拐角附近的分离流动呈现明显的三维特征,转捩流动也存在三维流动结构,与静风洞状态相比,噪音风洞状态下,有转捩流动发生,对壁面热流影响较大,对激波系影响很小.对于着陆器模型,底部流动发生转捩,使得底部流动由不稳定非定常的流动结构变为稳定定常的流动结构,这有益于姿态控制设计.
简介:纳米孔隙内气体流动的理论预测对气体微流控器件的设计和制造具有重要的理论指导作用,文章采用分子动力学方法研究了氮气、氧气和二氧化碳混合气体在平行壁纳米孔隙内的剪切流动特性和边界滑移特性.研究结果表明:随着加入二氧化碳比例的不断增加,混合气体滑移速度不断增大,并且当二氧化碳的比例低于20%时,混合气体流动速度沿孔隙宽度方向呈线性分布;而当比例达到40%后,其速度轮廓将呈现非线性趋势.当二氧化碳所占比例为20%时,随着孔隙宽度的增加,混合气体的整体边界滑移随之减小.探究了混合气体密度和气-固耦合强度对混合气体流动及边界滑移的影响机理.发现随着混合气体密度的减小,气流边界滑移增大;随着气-固界面耦合强度的增强,边界气体分子易被吸附而出现黏滑运动,气体分子在边界处的积聚现象增强,剪切应变率增大,边界滑移减小.
简介:为了提高舰船惯性导航系统在动基座下的传递对准的精度和快速性,针对舰船平台的应用特点,采用卡尔曼滤波器对主、子惯导的“速度加角速率”参数的误差量进行滤波估计并进行了算法设计。运用卡尔曼滤波器的平滑算法改善传递对准的精度。针对卡尔曼滤波器平滑算法会降低对准速度的缺点,在只损失一小部分精度的前提下,创新性的采用卡尔曼滤波器的降阶算法提高了对准速度。通过Matlab软件对卡尔曼滤波器算法、卡尔曼滤波器平滑算法和卡尔曼滤波器平滑加降阶算法的速度误差和姿态误差分别进行了仿真。仿真结果表明,“速度加角速率”匹配传递对准改进算法具有稳健的对准精度和快速性,有一定工程应用参考价值。
简介:为了解决乘波体偏离设计条件下气动特性会恶化,特别在低速时,升力严重不足这个问题,提出了通过增大后掠角生成前缘涡,增加背风面的升力,以改善乘波体低速气动性能.首先使用VisualBasic编程语言,并通过CATIA软件二次开发技术,实现了锥导乘波体的参数化设计和自动生成.再通过控制圆锥角和流场长度这两个设计参数,获得了大后掠乘波体构型.最后,运用剪切应力输运(shear-stress-transport,SST)模型,计算了所得乘波体的气动特性,并分析了流场变化,发现乘波体在设计状态下激波能很好附着在前缘上,在小的正攻角下,乘波体可获得比设计状态更高的升阻比,满足巡航要求.运用I.模型计算了乘波体的低速气动特性,得到了不同攻角下升力、阻力和升阻比的变化规律.研究结果发现,乘波体在低速下产生了明显的涡结构,在合适攻角下,能产生数量可观的附加升力,提高了乘波体的水平起降性能.
简介:为了提高水下航行器组合导航系统精度和可靠性,针对水下航行器组合导航系统量测噪声统计特性随实际工作环境的不同而变化的特点,提出了基于模糊自适应联邦卡尔曼滤波的水下组合导航算法。通过监测理论残差与实际残差的协方差的一致程度,应用模糊系统不断调整滤波器的增益系数,对子滤波器进行在线自适应调整,从而实现导航状态的最优估计滤波。通过对联邦滤波器信息分配系数模糊自适应调整,减少了滤波计算量,提高了滤波实时性。软件仿真实验结果表明:模糊自适应滤波可以有效地提高水下航行器组合导航系统的精度和可靠性,提高导航滤波实时性,克服传统的滤波算法的缺点与不足。
简介:沿试验段侧壁发展的附面层是影响飞行器半模型实验数据精准度的主要因素之一.利用数值模拟方法验证了涡流发生器减小附面层影响的可行性,重点分析了安装角度、结构尺寸、安装位置及个数等设计参数对附面层内速度分布的影响规律,对涡流发生器尾涡强度以及沿流向的发展规律进行了初步探讨.结果表明,涡流发生器产生的尾涡能够有效改善附面层内的速度分布,进而减小附面层厚度,降低附面层影响;涡流发生器的后缘应略高于当地附面层厚度,安装角度、位置、个数等参数必须合理设计以减小涡流发生器对试验段主气流的影响.基于计算结果初步设计了可用于2.4m跨声速风洞半模试验段的涡流发生器,在亚声速范围内能够减小模型区侧壁附面层厚度66%左右,对核心流Mach数影响小于0.003,为涡流发生器的实际应用提供了依据.
简介:传统的使用伪距和相位组合进行周跳探测的方法受限于伪距精度,在多路径效应严重和载体高动态下不可靠。针对该问题,构建北斗/INS紧组合模型,利用惯性辅助北斗三频信号线性组合构造了周跳探测量,兼顾错探率和漏探率,确定探测阈值系数为2.5768。基于卫星高度角采用正弦函数模型确定载波噪声,分析了载波噪声和卫地距误差对周跳探测和修复的影响。在此基础上选择组合量(0,-1,1),(1,3,-4),(-3,4,0)联合进行周跳探测和修复。使用车载组合导航实测数据验证周跳探测模型的效果。实验结果表明,对于模拟的密集小周跳,所有卫星错探率低于1.75%,漏探率低于0.11%,除低高度角卫星C05,所有卫星修复错误率低于0.35%。对于北斗信号中断的场景,在75s部分中断内或18s完全中断内都能够正确修复所有卫星的所有类型周跳。
简介:使用高阶间断Galerkin(discontinuousGalerkin,DG)方法求解双曲守恒律方程组时,非物理效应常常导致计算过程的中断,这在很大程度上制约着该方法在计算流体力学中的应用.文章结合局部单元上原始流动变量的Taylor展开,设计了一种新型的限制器,通过对各阶空间导数的重构,有效地消除了非物理振荡的不利影响.对二维Euler方程的计算结果表明,该限制器不仅能够捕捉高质量的激波,而且能够保证残值的有效收敛.
简介:一般的Kalman滤波器要求有准确的动态和统计模型,而低成本的MEMS-IMU性能随着温度急剧变化,故在MEMS-IMU/GPS组合导航系统中使用一般的Kalman滤波器存在很多的局限性。针对低成本的MEMS-IMU/GPS组合导航系统,提出了多模态自适应滤波算法在MEMS-IMU/GPS组合导航系统中的应用;针对普通的多模态算法中的问题,采用修正的多模态自适应滤波算法来提高MEMS-IMU/GPS组合导航系统的性能。使用静态实时测试数据,验证了所提出的算法。测试结果表明,与普通Kalman滤波器相比,修正的多模态滤波算法提高了MEMS-IMU/GPS组合导航系统的性能;采用所提出的算法,MEMS-IMU/GPS组合导航系统的短时间静态位置精度小于5m(标准差),速度精度小于0.1m/s(标准差),姿态角精度小于0.5°(标准差)。
简介:对于具有一定机动能力的弹道式再入目标跟踪问题,稳定性好、鲁棒性强、收敛精度高的估计方法是保证跟踪精度的关键。针对再入运动模型和测量体制的强非线性以及目标机动引起的滤波精度下降问题,提出一种将强跟踪滤波(STF)和基于三阶球面-向径容积规则的容积卡尔曼滤波(CKF)相结合的强跟踪-容积卡尔曼滤波(STCKF)。通过将强跟踪算法中的自适应渐消因子引入到滤波时间更新和测量更新方程中,在线实时调整滤波增益矩阵,能有效避免模型失准造成的滤波性能下降,使该算法兼具CKF滤波精度高和STF鲁棒性强的优点。通过数学仿真表明,改进后的STCKF可以实现对具有机动的弹道式再入目标的高精度跟踪,相对于CKF精度提高50%,并且具有更强的鲁棒性和自适应能力。