简介:在移动边缘云计算系统中重复覆盖的异构网络场景下,为了满足移动终端的任务卸载需求,同时降低终端任务卸载代价,提出基于演进博弈的云资源和计算资源联合分配方案(JRA-EG).同一个区域内具有任务卸载需求的终端形成一个种群,种群中终端通过选择不同的服务点(SPs)获得不同的无线资源和计算资源.为了建模与分析服务点选择与资源分配,建立了演进博弈模型.博弈的代价函数包括能耗代价、时延代价和经济代价.分别提出了基于复制动态的集中式算法和基于Q-learning的分布式算法求解演进均衡.仿真结果表明,所提的2种算法均能快速收敛至均衡解.与已有算法相比,JRA-EG方案节省了终端消耗能量,同时也降低了任务卸载时延.提出的方案能合理调度云资源和无线资源,从而有效降低终端的任务卸载代价.