简介:陀螺的噪声是影响组合导航系统精度的重要因素之一。以农机多传感器组合导航系统为研究背景,在分析经验模态分解去噪和小波去噪的基础上,提出了一种基于自相关特性的经验模态分解去噪方法。该方法根据本证模态函数分量的自相关函数特性,提出了一种含噪本证模态函数筛选策略。该方法能够自适应地确定主要含噪的本证模态函数分量,避免了需要人为确定的不足;同时,结合改进小波阈值去噪的优势,避免了将混叠在噪声中的有效信号完全消除,使其具有一定的自适应性。为了验证方法的有效性,利用农机组合导航系统中微机械陀螺的实际输出数据,分别采用改进阈值小波去噪方法、经验模态分解去噪和改进的经验模态分解去噪方法进行了对比试验。结果表明,改进经验模态分解去噪方法的效果要优于前者,在一定程度上能够改善农机多传感器组合导航系统的定位精度。
简介:金融资产收益率不仅具有尖峰厚尾性、异方差性,还具有长记忆性。基于此,本文建立ARFIMA-GARCH-Copula模型来研究沪深股市的相关结构和等权重投资组合风险值VaR,利用上证指数和深成指数收益率的组合来进行实证研究。首先采用经典R/S分析法检验各个资产收益率的长记忆性,经过分数阶差分后选用GARCH模型建模得到边缘分布。然后选择Copula函数来刻画两资产之间的相关结构,建立联合分布模型。进而采用MonteCarlo方法模拟产生各资产的收益率序列,计算出投资组合的风险值VaR。实证研究表明:沪深股市具有长记忆性,且两者具有对称的尾部相关性;Kupiec检验说明ARFIMA-GARCH-Copula模型较之于GARCH-Copula模型能更准确地度量投资组合风险。