简介:通过运用Ricceri的一个三临界点定理,得到了一类具变分结构的拟线性椭圆方程组的多解的存在性.
简介:研究具有四个分担值的亚纯函数的唯一性问题,对Gunderson的一个结果做了改进。
简介:运用变分方法研究了下面问题-Δpu=μupx(s)s-2u+f(x,u),x∈Ω,u=0,x∈Ω,多重解的存在性,其中Ω是一个具有光滑边界的有界区域.
简介:基于作者先前提出的Lipschitz对偶思想,对非线性Lipschitz算子半群引入了若干Lipschitz对偶概念,得到了一类非线性Lipschitz算子半群存在生成元的特征刻画.这一结果直接将关于C0-半群如下结论推广到了非线性情形:C0-半群具有有界生成元当且仅当它一致连续.
简介:本文中,我们研究一类由极大Bochner—Riesz算子和Lipschtz函数A生成的多线性算子,获得了它的(Lp,上q)型,而且我们还将证明此算子从Lebesgue空间到Lipschtz空间、从Herz空间到Campanato空间和从Lp空间到Tribel—Lizorkin空间的有界性.