简介:考虑动态输出反馈控制下Euler-Bernoulli梁的振动抑制问题,证明了系统算子生成的C0-半群,不指数稳定但渐近稳定.且当初值充分光滑时,利用Riesz基方法估计出系统能量多项式衰减.
简介:Inthispaper,theauthorsdesignboundaryfeedbackcontrollersattheinteriornodetostabilizeastar-shapednetworkofEuler-Bernoullibeams.Thebeamsarepinnedeachother,thatis,thedisplacementsofthestructurearecontinuousbuttherotationsofthebeamsarenotcontinuous.Thewell-posed-nessoftheclosedloopsystemisprovedbythesemigrouptheory.Theauthorsshowthatthesystemisasymptoticallystableiftheauthorsimposeabendingmomentcontroloneachedge.Finally,theauthorsderivetheexponentialstabilityofthesystem.
简介:TheproblemofquickanalysisusingexactgeometrydatawasproposedbyHughesetal.andtheisogeometricanalysisframeworkwasintroducedasasolution.Inthisletter,theexactgeometryconceptiscombinedintothequasi-conformingframeworkandanovelmethod,i.e.,theexactgeometrybasedquasi-conforminganalysisisproposed.Inpresentmethodthegeometryisexactlydescribedbynon-uniformrationalB-splinebases,whilethesolutionspacebytraditionalpolynomialbases.Presentmethodcombinesthemeritsofbothisogeometricanalysisandquasi-conformingfiniteelementmethod.InthisletterEuler-Bernoullibeamproblemissolvedasanexampleandtheresultsshowthatthepresentmethodiseffectiveandpromising.
简介:ThenonlinearvibrationsofviscoelasticEuler–BernoullinanobeamsarestudiedusingthefractionalcalculusandtheGurtin–Murdochtheory.EmployingHamilton'sprinciple,thegoverningequationconsideringsurfaceeffectsisderived.Thefractionalintegro-partialdifferentialgoverningequationisfirstconvertedintoafractional–ordinarydifferentialequationinthetimedomainusingtheGalerkinscheme.Thereafter,thesetofnonlinearfractionaltime-dependentequationsexpressedinastate-spaceformissolvedusingthepredictor–correctormethod.Finally,theeffectsofinitialdisplacement,fractionalderivativeorder,viscoelasticitycoefficient,surfaceparametersandthickness-to-lengthratioonthenonlineartimeresponseofsimply-supportedandclamped-freesiliconviscoelasticnanobeamsareinvestigated.
简介:研究了Bernoulli微分方程的通解、积分因子,进而讨论了可化为Bernoulli方程的两类方程,并给了积分方程中的Bernoulli方程和它在数学建模中的应用.
简介:本文致力于研究非线性中立型延迟积分微分方程隐式Euler方法的收缩性。本文中的Lipschitz数是关于变量t的函数,而不是常数,最终能得到其数值解的结果是收缩的。
简介:
简介:利用Bernoulli多项式和Bernoulli函数,给出了连续可微函数的Bernoulli表示,并用这种表示来解决一类差分方程的通解问题。
简介:IntheprocessofsolvingEulervectorsbasedonGNSShorizontalmovementfield,thenumberofestimatedparameterscanaffectEulervectorresults.Thisissueisanalyzedthroughtheoreticaldeductionandpracticalexampleinthispaper.Firstly,thedifferencebetweentheresultsofEulervectorsindifferentsolvingmodelsisdeduced.Meanwhile,basedonGNSShorizontalmovementfieldintheChinesemainlandfrom2004to2007,twocommonmodels(RRMandREHSM)areusedtodiscusstheimpactofsolvingmodelsonEulervectorsandthefollow-upstudy.Theresultshowsthatthemaximumvalueofthedifferenceinablock’sentirerotationcanreach2.6mm/a,andshouldnotbeignored.Therefore,theresultsofhorizontalmovementaredifferentusingdifferentkinematicblockmodels,andthisshouldbepaidmoreattentionintheanalysisofcrustalhorizontalmovement.