简介:与以往教授的《勾股定理》不同,本节课刘溪洋老师尝试使用'电子书包'技术参与教学.第一步,课前刘老师将微课上传到'电子书包'上,让学生提前自学勾股定理的基础内容,同时学生和老师可以在互动讨论模块自由交流.第二步,老师在线发布测试题,并利用'电子书包'的测试反馈功能,及时统计学生答题情况,为教师分析学情、分析教学重难点提供依据.第三步,课堂开始前几分钟,教师对自学知识进行总结梳理,并根据已掌握的学生自学情况进行有针对性地讲解.第四步,根据实际教学需要,在常规教学中恰当地使用'电子书包',比如学生在'电子书包'学生端书写勾股定理的证明方法时,老师可以在大屏幕上同步调取并展示学生的证明过程,让学生的学习过程可视化,也提高了教师的教学效率.第五步,在课堂结尾,刘老师再次发布在线检测题,检测学生课堂知识的掌握情况,并做到当堂问题当堂解决.整堂课一气呵成,课前自学和课堂教学紧密衔接,教学活动突破时空限制,课堂教学更高效、更有针对性,这些都离不开'电子书包'技术优势的合理发挥.
简介:摘要勾股定理是几何学中的明珠,它充满了魅力。千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作、反复被人论证。中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。
简介:内容摘要:勾股定理是华师大版八年级上册第14章的内容,它是在我们已经初步掌握直角三角形定义及有关性质的基础上进行学习的,它是我国古代数学的一项伟大成就,是三角形三边关系之后用来描述特殊三角形三边关系的又一个重要的结论.勾股定理揭示了直角三角形三边长的内在联系,反映了三边之间特殊的平方关系,它的逆定理为我们提供了三角形是否是直角三角形的依据,也是判定两条直线是否互相垂直的重要方法.它为我们利用代数方法来研究几何图形提供了新的途径和方法,因此应用十分广泛.