简介:目的:基于光学定位跟踪系统和最小二乘误差算法建立数字化(牙合)架实验平台,评价其重复测量精度.方法:将位于牙尖交错位的一副上下颌牙列模型安装于半可调机械(牙合)架,在上颌中切牙唇侧,两侧磨牙颊侧各粘贴一个Mark球.用光学定位跟踪系统获取开闭口、前伸、左右侧方运动时3个定位球球心的实时空间坐标值.用牙颌模型三维扫描仪获取位于牙尖交错位的上下颌牙列及Mark球的三维数据,软件拟合Mark球球心点.基于最小二乘误差配准算法开发运动仿真算法,将两种来源的球心坐标实时配准,驱动牙列仿真上述咬合运动.获取开闭口运动终点一个定位球心的XYZ坐标值,重复10次,用单因素方差进行统计学分析.结果:基于光学定位跟踪技术和最小二乘误差配准算法,建立了一种机械(牙合)架咬合运动的数字化仿真方法,半可调机械(牙合)架多次开闭口运动终点各球心坐标重复测量误差为(0.5247±0.2399)mm.结论:用光学运动跟踪技术可快速、相对准确地获取机械(牙合)架引导的牙列模型三维运动轨迹.用最小二乘误差配准算法,可实现基于轨迹点的咬合运动计算机模拟.
简介:目的:测定B、C、D色系IPSE.max牙本质瓷的无限光学厚度。方法:制作直径为13mm,厚度为1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0mm的IPSE.maxB1、B2、B3、B4、C1、C2、C3、C4、D2、D3、D4色号的盘状牙本质瓷试样,应用美能达CM-5分光测色计测试E.max牙本质瓷在标准黑、白背景条件下的色差值(ΔE),利用拟合回归方程计算出ΔE等于1.5时各色号牙本质瓷的厚度值。结果:B色系牙本质瓷的无限光学厚度值(ΔE=1.5)为3.046-3.692;C色系为2.680-2.799;D色系为2.429-2.766;11个回归方程的决定系数范围在0.944-0.988,拟合度良好。结论:相同厚度的条件下,随着色号增高,色差值逐渐减小,遮色能力逐渐增强。相同色号的条件下,随着厚度增加,色差值逐渐减小,遮色能力逐渐增强。
简介:目前,多种临床技术应用于牙槽骨缺损的重建,为后期修复创造条件.多数学者建议采用自体骨重建牙槽骨,并保持适量软组织覆盖[1].最常用的骨增量技术包括onlay骨块移植术[2-3]、骨引导再生术[4-6]和“三明治”植骨术[7]等.这些技术均需进行损伤较大的手术,且技术敏感性较高.因此,探索一种手术创伤小、技术敏感性低且效果肯定的牙槽骨重建手术,已成为当前研究的热点.本文报道了1例应用自体骨块移植联合富血小板纤维蛋白(platelet-richfibrin,PRF)即刻修复上颌种植体唇侧骨板缺损的病例,并对自体骨重建牙槽骨的相关问题进行了探讨.