简介:2001年3月10日由中央电视台播出第八届“华罗庚金杯’’少年数学邀请赛初赛第一道试题是:“2002年将在北京召开国际数学家大会.如图1所示,这是大会的会标图案.它由四个相同的直角三角形拼成.已知两直角边的长为2和3,求大正方形的面积.”显见,大正方形面积等于四个直角三角形与中间小正方形面积之和.每个直角三角形面积是3.四个直角三角形面积是12,中间小正方形的边长为3—2=1,面积是1.所以大正方形的面积是3×4+1=13.这道试题向广大青少年传播了2002年将在北京召开国际数学家大会的信息,并介绍了大会会标的图案,其中还蕴涵着勾股定理及其具有中华特色的“弦图”.怎样把一个图形按照要求分割成若干部分?怎样把一个图形分割成若干部分后,再按要求拼接成另一个图形?这就是本讲要解决的问题.