简介:在72届SEG会上,BP公司LindaHodgson等人提出了一种新的噪声压制方法——频率切片滤波(FSF)。在复杂的X-Y频率域中,FSF应用二维平滑滤波器直接去噪。它可以任意选择特定的频率处理范围进行有针对性的滤波,而数据的其余部分不受影响;任何适合于空间滤波的噪声都能够去除,特别是低频噪声的消除和剩余多次波能量的衰减。具体实施过程分为4个步骤:①应用一维快速傅立叶变换到目的层时窗;②检查X-Y频率域数据体,确定频率范围,有针对性地进行噪声衰减;③在每一个频率切片上进行平滑处理,数据的其余部分不改变;④进行傅立叶逆变换,得到滤波结果。以下选取北海2个油田的实例展示其良好的滤波效果。
简介:分界面的频率属性分析是一项新的地震界面属性拾取和解释方法。与时间域反射波成像、地震振幅研究相比,地震信号频率域的研究较弱。本文系统分析了脉冲信号的各类频率意义,指出瞬时频率属性不能提供在到达时间位置上的准确的简谐成分频率信息;引用傅立叶积分的概念解释了时频分析方法原理,介绍了(俄罗斯)穆申教授的时频分析算法;给出了时频分析剖面、分频剖面、层位切片解释模型以及时频分析数据体的时间剖面显示方式(多频合成时间剖面、多频信息RGB三原色合成时间剖面);发展了三维地震数据体的层位地震数据时频分析技术。文后对三维数据体频率属性结果的应用给出了一些提示。
简介:模糊逻辑和其他相关“软”计算技术的理论和应用最近有了快速发展,为在以自然语言表述的知识基础上开展模拟开辟了新的途径。对于一般的沉积学模拟和具体的地层模型,基于模糊集理论的模糊逻辑系统都能提供真实的沉积分布特征。本文有两大目的:(1)介绍模糊集和模糊逻辑的基本概念;(2)在日益复杂的成套沉积模型中使用这些概念。这些沉积模型在时间和空间的标度上是变化的,因此要模拟沉积物的分布体系可以使用模糊逻辑系统。本文要介绍的模型有:(1)最近8万年海平面变化过程中的礁发育二维模型;(2)海平面变动或稳定条件下的泛滥平原三维假想模型;(3)加勒比海大巴哈马滩碳酸盐沉积物产率的二维模型;(4)美国死谷中部盆地化学和硅屑沉积物深部岩心的沉积相复原模型。这一死谷地区的模型使用了与自适应神经网络相结合的模糊逻辑系统的“学习功能”。用模糊逻辑模拟沉积特征的地层模型,一般都能以自然的地质变量模拟地下的沉积相分布(不仅仅是沉积水深)。这为地下地质学的统计模拟提供了另一种方法。对于地质家而言,这种方法与需要解成对微分方程组的复杂模型相比,在计算上显然更为有效和更为直观。
简介:富有机质页岩的地球物理描述涉及地质和地球物理力学参数的间接估算。地质参数包括孔隙度、粘土含量(V粘土)以及总有机碳含量(TOC)。重要的地质力学参数包括天然裂缝和可压性(岩石水力压裂容易程度)。除了各种工程因素,可压性还取决于以下地质因素:原地应力(垂直有效应力和最大及最小水平有效应力)、孔隙压力、脆性和岩石强度。在井场,我们有时可以获取完整描述目标页岩层的足够的测量数据,但远离井场时,常常没有足够的实际测量数据,因此岩石性质往往是不清楚的。另一方面,地震数据通常可用于岩石的波阻抗(AI)和Vp/Vs比值的估算。如果地震资料品质足够好且工区的面积足够大,那么有时还可以估算岩石的密度,此外还可以估算各向异性弹性,但这些测量结果都会存在一定程度的误差。由于页岩储层非常复杂,岩石性质参数的数量相对较多,而且现场可独立获取的信息也有限,导致岩石性质的反演结果常常不是唯一的。
简介:有关富有机质页岩弹性性质随热成熟度的演化,们们仍未有清晰的认识,而这种认识对于烃源岩和非常规储层的描述至关重要。为了更深入地认识富有机质页岩的弹性性质和显微结构,我们从具有不同显微结构的两套富有机质页岩中采集了样品,研究了这些样品在热解诱发的热成熟作用前后的声波速度和弹性各向异性。为了在物理上更加逼真地模拟原地热成熟作用,我们在储层围压条件下利用完好无损的岩心塞开展了热解试验。对富含粘土的层状巴奈特页岩(BarnettShale)样品的弹性性质开展了迭代描述,借助于声波速度对垂直于层理面方向上压力的敏感性增强来描述近平行于层理面的裂缝发育。然而,这些裂缝无法通过时间推移扫描电子显微镜成像进行观察,这说明这些裂缝要么只有微米以下的开度,要么大都发育在样品的核心部位。在没有孔隙压力的情况下,随着围压提高,这些诱发的裂缝闭合,而此时根据声波特性是无法把这个样品与热解前的样品区分开的。相反,微晶质的格林河组(GreenRiver)岩石样品并未形成线状柔性构造(alignedcompliantfeatures),而是随着承栽负荷的孔隙充填干酪根从样品中被移除,其速度表现出基本上与方向无关的下降。由于矿物呈现出微弱的定向排列,样品内在的各向异性相对较弱;此外,由于速度出现了与方向关系较弱的变化,各向异性随热成熟度的变化并不能指示线状柔性构造的发育。我们的结果说明,根据层状页岩弹性各向异性的增强,或者根据非层状页岩、微晶质岩石(micriticrocks)或粉砂岩声波速度的下降,就能够借助于声波特征识别地下热成熟度较高的层段。