学科分类
/ 2
28 个结果
  • 简介:在非线性项f是关于u的奇函数,势函数是有界的周期函数且下界是正的,Sobolev嵌入缺乏了紧性和f不再满足(AR)条件下,运用临界点理论中的喷泉定理和集中紧性原则证明了R~N中具有周期势函数的一类线性p-Laplacian方程存在无穷多非平凡解。

  • 标签: 集中紧性原理 (C)条件 喷泉定理
  • 简介:证明了指数型椭圆方程x^2=p^2m-p^m+n+1无解(x,p,m,n),其中x,m,n∈N^+,m〉n〉1,p∈P.上述结果部分解决了组合论中关于可逆Abel差集的Ma猜想.

  • 标签: 指数型超椭圆方程 正整数解 PELL方程
  • 简介:群G的子群H称为半置换的,若对任意的K≤G,只要(|H|,|K|)=1,就有HK=KH.H称为s-半置换的,若对任意的p||G|,只要(p,|H|)=1,就有PH=HP,其中P∈Sylp(G).本文研究Sylow子群的极大子群及极小子群的s-半置换性对有限群的p-可解性的影响.

  • 标签: S-半置换子群 极大子群 极小子群 P-超可解群
  • 简介:本文应用中立型时不等式解振动的判别准则和变换技巧,研究了一类n维中立型非线性时微分方程组{d/dt[Xi-c(t)Xi(t+r)]+∑k=1^m1∑j=1^naij^k(t)Xj(t+τk)-∑s=1^m2∑j=1^nbji^s(t)Xj(t+δs)+bif(σ(t+ηi)))=0σ(t)=∑t=1^nCsxi(t)(i=1,2,…,n)解的振动性,获得了其解振动的判别准则。

  • 标签: 非线性时超微分方程组 振动性 中立型 时超不等式 判别准则