学科分类
/ 1
7 个结果
  • 简介:摘要 : 农业模型、农业人工智能及数据分析等技术贯穿于智慧农业的信息感知、信息传输、信息处理与控制全过程,是智慧农业的核心技术。为进一步明晰农业模型的内涵和作用,促进农业模型进一步研究及应用,推动智慧农业健康、稳定和可持续发展,本研究采用系统分析、比较及关系框图等方法,分析了农业模型的内涵,阐述了农业模型和智慧农业要素与过程的关系,明确了农业模型的作用并附以应用案例,比较了农业模型的国内外重要发展动态与趋势。国内外农业模型研究与应用重要进展比较表明,农业模型研究应用需要考虑农业生物要素的 4个水平、农业环境要素的 6个尺度、农业技术与农业经济要素的 6个层次并采用相应方法进行,农业模型环境要素空间多尺度研究应用有较大发展潜力;农业模型与分子遗传学、感知技术及人工智能技术结合,农业模型研究应用的公私有组织协作,粮食安全挑战将成为农业模型进一步发展的重要推动力,且需更注重将各种农业系统模拟、数据库、和谐性与开放数据及决策支持系统相连接。中国农业模型研究与应用已形成具有中国特色的作物模型系列,也融入农业模型的互比较与改进、智慧农业等世界潮流,需要抢抓机遇,加快发展。农业模型是农业系统要素内及要素间关系的定量化表达,是农业科学定量与综合的重要方法,具有认识论价值,它与感知技术的结合可以在智慧农业数据获取与处理中发挥不可或缺的作用,成为信息农业技术落地应用的重要桥梁和纽带。

  • 标签: 农业模型 模型分类 生物模型 环境模型 技术模型 经济模型 应用案例 智慧农业
  • 简介:[目的/意义]针对传统大米品质监管追溯系统中存在的品控数据链机制不够完善、品控信息可追溯程度不足、数据上链效率低及隐私信息泄露等问题,提出一种差分隐私增强的大米区块链品控模型.[方法]首先,结合大米全产业链,设计数据传输流程,涵盖种植、收购、加工、仓储和销售等各环节,有效保证品控数据链的连续性;其次,为解决上链数据量大、上链效率低问题,将大米全产业链各环节关键品控数据存储于星际文件系统(InterPlanetary File System,IPFS),然后将存储完成后返回的哈希值上链;最后,为提高品控模型信息可追溯程度,将种植环节关键品控数据中涉及隐私的部分信息通过差分隐私(Differential Privacy)处理后展示给用户,模糊化个体数据,以提高品控信息可信度,同时也保护了农户种植隐私.基于该品控模型,设计了差分隐私增强的大米区块链品控系统,并在相关大米企业实际运行.[结..

  • 标签: 星际文件系统区块链品控高效上链差分隐私增强信息追溯
  • 简介:[目的/意义]为了提高体尺关键点定位准确率,猪三维点云体尺自动测量方法会采用点云分割,在各个分割后局部点云定位测量关键点,以减少点云之间相互干扰.然而点云分割网络通常需要消耗较大计算资源,且现有测量点定位效果仍有待提升空间.本研究旨在通过设计关键点生成网络从猪体点云中提取出各体尺测量所需关键点.在降低显存资源需求的同时提高测量关键点定位效果,提高体尺测量的效率和精度.[方法]针对猪三维表面点云进行体尺测量,提出了一种定位猪体尺关键点的模型Pig Back Transformer.模型分为个模块,分别设计了种改进的Transformer自注意力编码器,第一模块为全局关键点模块,首先设计了一种猪背部边缘点提取算法用于获取边缘点,再使用edge encoder编码器以边缘点集合作为输入,edge encoder的edge attention中加入了边缘点和质点的偏移距离信息;第二模块...

  • 标签: Pig Back Transformer三维点云体尺自动测量测量关键点定位深度相机自注意力机制
  • 简介:摘要 : 为提高现有苹果目标检测模型在硬件资源受限制条件下的性能和适应性,实现在保持较高检测精度的同时,减轻模型计算量,降低检测耗时,减少模型计算和存储资源占用的目的,本研究通过改进轻量级的 MobileNetV3网络,结合关键点预测的目标检测网络( CenterNet),构建了用于苹果检测的轻量级无锚点深度学习网络模型( M-CenterNet),并通过与 CenterNet和单次多重检测器( Single Shot Multibox Detector, SSD)网络比较了模型的检测精度、模型容量和运行速度等方面的综合性能。对模型的测试结果表明,本研究模型的平均精度、误检率和漏检率分别为 88.9%、 10.9%和 5.8%;模型体积和帧率分别为 14.2MB和 8.1fps;在不同光照方向、不同远近距离、不同受遮挡程度和不同果实数量等条件下有较好的果实检测效果和适应能力。在检测精度相当的情况下,所提网络模型体积仅为 CenterNet网络的 1/4;相比于 SSD网络,所提网络模型的 AP提升了 3.9%,模型体积降低了 84.3%;本网络模型在 CPU环境中的运行速度比 CenterNet和 SSD网络提高了近 1倍。研究结果可为非结构环境下果园作业平台的轻量化果实目标检测模型研究提供新的思路。

  • 标签: 机器视觉 深度学习 轻量级网络 无锚点 苹果检测
  • 简介:摘要 : 叶片湿润时间( LWD)是植物病害模型的重要输入变量之一,它与许多叶部病原菌的侵染有关,影响病原侵染和发育速率。为了准确地预测日光温室黄瓜病害的发生时间和方位,本研究于 2019年 3月和 9月在北京个不同类型日光温室内按照棋盘格法设置了 9个采样点部署温湿光传感器和目测叶片湿润时间,每隔 1 h采集一次温度、湿度、辐射和叶片湿润数据进行定量估算分析。分析结果表明: BP神经网络模型个温室的试验条件下获得了相似的准确度( ACC为 0.90和 0.92),比相对湿度经验模型估算叶片湿润时间的准确度( ACC为 0.82和 0.84)更高,平均绝对误差 MAE分别为 1.81和 1.61 h,均方根误差 RSME分别为 2.10和 1.87,决定系数 R2分别为 0.87和 0.85;在晴天和多云天气条件下,叶片湿润时间的空间分布总体规律是南部>中部>北部,南面是叶片湿润平均时间( 12.17 h/d)最长的区域;由东向西方向上,叶片湿润时间的空间分布总体规律是东部>西部>中部,中部是叶片湿润平均时间( 4.83 h/d)最短的区域;雨天的叶片湿润平均时间比晴天和多云长,春季和秋季分别为 17.15和 17.41 h/d。这些变化和差异对温室黄瓜种群水平方向的叶片湿润时间分布具有重要影响,与大多数高湿性黄瓜病害的发生规律密切相关。本研究为预测温室黄瓜病害分布提供了有价值的参考,对控制病害流行和减少农药使用具有重要意义,提出的区域化分析温室内叶片湿润时间的方法,可以为模拟日光温室叶片湿润时间的空间分布提供参考。

  • 标签: 日光温室 估算模型 区域化 叶片湿润时间 BP神经网络 传感器
  • 简介:[目的/意义]天然牧场下放牧牲畜数量的准确检测是规模化养殖场改造升级的关键.为满足规模化养殖场对大批羊群实现精准实时的检测需求,提出一种高精度、易部署的小目标检测模型CSD-YOLOv8s(CBAM SP-PFCSPC DSConv-YOLOv8s),实现无人机高空视角下小目标羊只个体的实时检测.[方法]首先,使用无人机获取天然草原牧场中包含不同背景及光照条件下的羊群视频数据并与下载的部分公开数据集共同构成原始图像数据.通过数据清洗和标注整理生成羊群检测数据集.其次,为解决羊群密集和相互遮挡造成的羊只检测困难问题,基于YOLO(You Only Look Once)v8模型构建具有跨阶段局部连接的SPPFCSPC(Spatial Pyramid Pooling Fast-CSPC)模块,提升网络特征提取和特征融合能力,增强模型对小目标羊只的检测性能.在模型的Neck部分引入了卷积注意力模块(Convolutional Blo...

  • 标签: 羊只检测YOLOv8小目标SPPFCSPC注意力机制深度可分离卷积
  • 简介:[目的/意义]区块链本质上是一个共享数据库,存储的数据是不可篡改、公开和透明的,应用在农产品供应链上可以提高产品透明度,吸引更多的消费者,但也会存在消费者隐私担忧问题.消费者的隐私担忧程度影响着农产品零售商对于是否售卖区块链溯源农产品的决策.通过研究区块链溯源对农产品零售商竞争策略、定价和最优决策的影响,零售商可以根据自己的市场情况制定市场竞争策略,提高自己的竞争力,优化农产品供应链.[方法]基于纳什均衡及Stackelberg博弈理论,建立初始农产品零售商与新进零售商的价格博弈模型,研究分析农产品零售商之间的竞争决策,利用区块链智能合约技术将博弈过程以及对应情况写入智能合约,保障合作博弈有效进行,将博弈结果上链来规范博弈双方的合作行为.[结果和讨论]消费者隐私担忧问题会影响农产品的价格和利润.此外,通过对家农产品零售商均衡策略..

  • 标签: 区块链供应链农产品零售商消费者隐私博弈论