学科分类
/ 2
23 个结果
  • 简介:膝关节摆动(VAG)信号是膝关节在做屈伸运动时由于接触摩擦产生的振动信号,它能够反映髌骨软化症、半月板损伤和交叉韧带损伤等膝关节损伤疾病的特征与状态。本研究分析了国内外文献对膝关节摆动信号的研究方法,包括信号的预处理方法、特征提取方法和分类方法几个方面。无创膝关节摆动信号的检测与分析,对于膝关节损伤疾病的无创检测和辅助诊断具有重要意义,正逐步得到临床医学的重视。最后分析了对于膝关节摆动信号研究还需要解决的问题以及未来的发展方向。

  • 标签: 膝关节摆动信号 时频分析 分类器 统计分析 非线性分析
  • 简介:为了去除荧光免疫层析检测中荧光信号的噪声,保留信号的细节信息,提出一种改进阈值的小波空域相关去噪算法。该算法将基于小波变换的空域相关去噪法和软阈值去噪法相结合,根据小波系数相关性的不同和平滑消去阈值法的思想,改进了软阈值去噪法的阈值变量和阈值函数。结果表明,该方法突出了信号边缘,能够有效地去除荧光信号的噪声,去噪后的信号光滑连续,且保留了信号峰的相关细节信息。

  • 标签: 荧光免疫层析检测 信号去噪 小波空域相关法 软阈值法 平滑阈值消去法
  • 简介:当前肌肉疲劳表面肌电信号(surfaceelectromgography,sEMG)特征提取方法,忽略了非线性跳错信号的影响,且不能在非平稳状态下进行特征提取,存在特征提取准确度差的问题。提出基于小波变换的肌肉疲劳sEMG特征提取研究,采用小波变换对所采集的样本去噪,结合时域、频域特征分析法,融合傅里叶变换方法对肌电信号中的线性特征进行提取,根据带谱近似熵理论对非线性挑错信号进行特征回归分析,并利用拟态分解函数和希尔伯特变换法对肌电信号进行时频特征的整合提取,最终完成基于小波变换的肌肉疲劳sEMG特征提取研究。实验验证,所提方法具有可行性,且将1000个肌电信号样本分成5组,对其中的跳错信号进行特征提取,所提方法准确度较文献方法高出75%,在非平稳状态下将200个肌电信号样本分成5组进行特征提取,所提方法准确度较文献方法高出33%。由此得出,所提方法优于当前特征提取方法。

  • 标签: 小波变换 时域特征 频域特征 表面肌电信号 肌肉疲劳