简介:本文用临界点理论中的能量最小原理得到了一类具(q(t),P(t))-Laplacian项的二阶非自治系统存在周期解的充分条件.
简介:运用Sehauder不动点定理,考察了边值问题{△^4u(k-1)=g(k,u(k-1),u(k),u(k+1),u(k+2)),k∈Z(1,N)u(0)=A,u(N+1)=B,u(N+2)=C,u(N+3)=D解的存在性.
简介:Inthispaper,weobtainaresultthatimprovestheresultsofGovilandNwaeze,QaziandtheclassicalresultofRivlin.
简介:本文旨在给出Banach空间值Hardy—Lorentz鞅空间的共轭空间的完全刻画.首先,对B值鞅引入了一类新的广义Lipschitz鞅空间及“原子鞅”的概念;其次,对B值Hardy-Lorentz鞅空间建立了“原子鞅”的分解定理;最后,以此为工具证明了其共轭空间是广义Lipschitz鞅空间.所得结论将已有的相应结果由实值鞅推广到Banach空间值鞅的情况.