简介:简要回顾了数值天气预报和气候预测可预报性研究的若干动力学方法,包括用于研究第一类可预报性问题的线性奇异向量(LSV)和条件非线性最优初始扰动(CNOP-I)方法,以及Lyapunov指数和非线性局部Lyapunov指数方法。前两种方法用于研究预报或预测的预报误差问题,可以用于估计天气预报和气候预测的最大预报误差,而且根据导致最大预报误差的初始误差结构的信息,这两种方法可以用于确定预报或预测的初值敏感区。应该指出的是,LSV是基于线性化模式,对于描述非线性大气和海洋的运动具有局限性。因而,对于非线性模式,应该选择使用CNOP-I估计最大预报误差。Lyapunov指数和非线性局部Lyapunov指数可以用于研究第一类可预报性问题中的预报时限问题,前者是基于线性模式,不能解释非线性对预报时限的影响,而非线性局部Lyapunov指数方法则考虑了非线性的影响,能够较好地估计实际天气和气候的预报时限。第二类可预报性问题的研究方法相对较少,本文仅介绍了由我国科学家提出的关于模式参数扰动的条件非线性最优参数扰动(CNOP—P)方法,该方法可以用于寻找到对预报有最大影响的参数扰动,并可以进一步确定哪些参数最应该利用观测资料进行校准。另一方面,通过对比CNOP—I和CNOP-P对预报误差的影响,可以判断导致预报不确定性的主要误差因子,进而指导人们着力改进模式或者初始场。
简介:支持向量机(SVM)方法是基于统计学理论的一种新的机器学习方法,对解决小样本条件下的非线性问题非常有效。利用2004~2007年南京站的逐日常规观测资料以及同期南京市环境质量监测点的逐日污染物浓度资料,使用SVM分类和回归方法分别建立了南京地区霾日分类预报模型和有霾日14时(北京时间,下同)能见度预报模型。预报试验结果表明:南京地区霾日的SVM分类预报结果,Ts(Threatscores)评分均在0.4以上;而有霾日14时能见度的SVM回归预报结果,按能见度误差范围为±3km算,准确率均达到了86%以上;加入当天08时新资料的订正预报模型,其预报结果优于起始预报模型。二者的预报结果较为满意,可以给实际业务预测提供参考。
简介:摘要近年来,随着农业发展越来越好,农民的生活条件日益渐提高,伴随着三农政策的提出,也为了让农业生产变得更好。如果能够准确地预报出农业气象灾害,可以很大规模的避免出现农业灾害的现象,这样一来,首先可以节省农业成本,能促进农业发展,更重要的是可以维护农民其自身的利益,让农民的利益实现最大化。本文主要列举说明了我国现在所面临的气象灾害情况,从我国农业气象灾害预报方法的角度出发,提出要加强气象灾害的预报方法以及研究措施,使其可以在预防气象灾害预报系统中起到一定作用,尽量减少对人民生命财产的损失,真正的做到为人民服务。
简介:选用1961—2015年东北地区26个气象站月平均气温资料、国家气候中心74项环流特征量指数、NCEP/NCAR再分析资料和1986—2015年辽宁省水稻单产资料,分析了辽宁省水稻产量的时间变化特征,基于大气环流对长期天气过程影响的滞后性,考虑预报因子的显著、稳定性和独立性,应用多元线性回归方法建立水稻年景的预报模型。结果表明:(1)辽宁省水稻实际产量、趋势产量、气象产量均呈增加趋势,发生气候突变时间分别为1992、1997和1994年,实际产量与气象产量的关系较密切;(2)水稻年景预报模型经F检验,具有统计学意义,预报基本正确率为81.9%,用该模型预测2014、2015年水稻年景,均接近实际值。