简介:摘要介绍基本粒子群优化算法的原理、特点,并在此基础上提出了一种改进的粒子群算法。通过在粒子初始化时引入相对基的原理使粒子获得更好的初始解,以及在迭代过程中引入变异模型,部分粒子生成相对应的扩张及收缩粒子,比较其适应度,保留最佳粒子进行后期迭代,使算法易跳出局部最优。通过经典函数的测试结果表明,新算法的全局搜索能力有了显著提高,并且能够有效避免早熟问题。
简介:为了改善常规PID算法在电动助力转向系统(EPS)控制中的不足,提高系统控制的精度、稳定性和抗干扰能力,采用粒子群算法(PSO)对PID控制器进行优化.根据EPS系统结构和动力学特性,建立了EPS系统数学模型.电机采用电流控制法,并以助力特性曲线中理想电流值与电机电流实际输出值的偏差作为PID控制器的输入.利用MATLAB平台建立EPS系统PID控制的整车模型,分析研究粒子群算法,并根据PSO算法优化PID控制器的参数.仿真结果表明:与常规PID控制相比,采用粒子群优化的PID控制,系统输出响应更平稳,抗干扰能力更强,鲁棒性好,控制效果更优.