简介:本文将一个关于两个不交国的单点粘合的图的LPlaCe谱的受控定理推广到了两个国的多点粘合何形;同时证明了相同的结果对目的Q一回也成立。
简介:一、判断题(每小题1分,共10分)1.整数和分数统称有理数.( )2.设甲数为x,若乙数比甲数的一半小2,则乙数是12(x-2).( )3.若a、b互为相反数,则13(a-b)=0.( )4.若a>0,b<0,则1a>1b.( )5.没有最大的负数.( )6.两个有理数的差一定小于被减数.( )7.任何有理数都有倒数.( )8.两个有理数的和与积都是正数,则这两个数必都是正数.( )9.如果(-x)2=9,那么x=3.( )10.一个数的平方一定是正数.( )二、填空题(每小题2分,共20分)1.-35的相反数是,-23的倒数是.2.x的平方与y的倒数的和表示为.3.绝对值是5的数是,平方得2
简介:建立了一维p-laplacian方程(1)的一切解均为非振动的必要条件.所得定理改进了Kusano等在文[4]中的相应结果.