学科分类
/ 1
5 个结果
  • 简介:通过理论推导提出了一种评价高速流动PIV示踪粒子随流能力的松弛特性分析模型,在法向Mach数大于1.4时具有良好的适用性.将新模型应用于试验测量,发展了高速流动PIV系统和示踪粒子布撒技术,验证了高速流动PIV的定量化测量能力.针对空间发展的二维超声速气固两相混合层,数值模拟了不同Stokes数和对流Mach数(M_c)下的粒子跟随性以及弥散和迁徙运动,结果表明:相同对流Mach数,粒径越小的示踪粒子跟随性越好,Stokes数在[1,10]范围内的粒子有最大扩散距离.示踪粒子的直径大小决定其在超声速混合层大涡拟序结构中的分布特征,且粒径越小,气体与粒子的掺混越剧烈.相同粒径的粒子,对流Mach数越大跟随性越差.

  • 标签: PIV 超声速混合层 松弛模型 粒子跟随性 Stokes数 对流Mach数
  • 简介:为了提高非线性卫星姿态控制系统的滤波性能,在建立了采用磁强计及太阳敏感器的卫星姿态模型的基础上尝试了新兴的粒子滤波(PF)算法对卫星系统进行姿态估计,进而对采用矢量观测的三轴稳定卫星的姿态确定问题进行了滤波算法的实时仿真,并将四元数转换成旋转矢量引入了粒子滤波算法,最后给出了卫星模型在不同粒子数目下的滤波性能比较,并在系统初始误差较大的情况下将粒子滤波算法与EKF滤波算法进行了滤波性能的对照。仿真结果表明,粒子滤波算法对粒子数目具有明显的依赖性,但是当粒子达到一定的数目时,粒子滤波的精度以及滤波稳定性都可以得到保证,尤其是在系统初始误差较大的情况下粒子滤波算法更显示了其优于EKF算法的滤波性能。

  • 标签: 矢量观测 姿态确定 粒子滤波 四元数
  • 简介:地形辅助导航是一种利用地形高度信息定位的导航技术,由于地形高度起伏是非线性的,因此地形辅助导航本质是非线性、非高斯贝叶斯后验概率估计问题。粒子滤波因为适合非线性、非高斯估计问题,被引入地形辅助导航领域得到广泛研究和应用,但粒子滤波算法存在粒子匮乏的问题,会影响定位精度。针对此问题,将高斯混合无迹粒子滤波(GMUPF)用于地形辅助导航,该算法用高斯混合模型(GMM)近似粒子分布,用无迹卡尔曼滤波(UKF)估计重要密度函数,不需要做重采样。通过用实际地形数据做飞行仿真实验,结果显示相比粒子滤波,不仅没有粒子匮乏问题,而且所用粒子数更少时估计精度略好。

  • 标签: 地形辅助导航 贝叶斯后验概率估计 粒子滤波 高斯混合无迹粒子滤波
  • 简介:传统的扩展卡尔曼滤波方法要求对非线性系统近似线性化,有可能会引入较大的模型误差.应用粒子滤波解决了这一问题.该算法可以直接应用于原系统的非线性模型当中,并且不需考虑系统噪声和量测噪声是否为高斯白噪声,都能得到很好的滤波效果.文中介绍了粒子滤波的理论基础-贝叶斯估计及具体的实现方式-蒙特卡罗方法;指出粒子滤波存在的退化问题,并从减小退化现象入手将重要性采样和再采样方法引入到算法之中;最后阐述了粒子滤波在导航系统中的一些应用.

  • 标签: 粒子滤波 贝叶斯估计 蒙特卡罗 组合导航 初始对准
  • 简介:针对自由漂浮状态下的空间机械臂系统,研究了基座姿态扰动最小的轨迹规划问题。首先通过正弦函数参数化机械臂各个关节,在机械臂关节角速度、角加速度以及基座姿态变化范围受限的约束条件下,定义了基座姿态扰动最小的目标函数,然后提出了基于混沌粒子群算法的轨迹优化策略,并给出了具体求解步骤。数值算例结果表明,在满足系统的约束条件下,机械臂关节变化平缓,不存在角速度突变的情况,并且比标准粒子群算法具有更快的收敛速度,在优化轨迹下进行运动仿真,结果表明终止时刻基座姿态扰动为1.3708°(三轴合成),而梯形规划的姿态扰动为8.5459°,优化后使得姿态的扰动减小84%,从而说明所提出的算法能够有效减小机械臂运动对基座姿态的扰动。

  • 标签: 空间机械臂 轨迹规划 混沌粒子群优化算法 优化