简介:在连续Gompertz模型基础上,导出了差分形式的Gompertz模型。通过对肿瘤生长数据的模拟,验证了差分形式的Gompertz模型对连续Gompertz模型具有良好的逼近效果;进一步,对其稳定性进行了研究,讨论了模型参数对平衡点稳定性的影响;最后,研究了一类基于差分形式的Gompertz模型的非线性动力系统的长期行为,数值模拟表明差分形式的Gompertz模型的长期行为对模型参数较为敏感。
简介:利用自反Banach空间中弱紧算子的因子分解技巧,对于一类非齐次项具有连续Lipschitz扰动的柯西问题,当其齐次项算子生成强连续算子半群且具有紧豫解式限制时,证明了方程强解的存在性.
简介:利用锥上的不动点定理证明了二阶Nuemann特征值问题-u″+Mu=λa(t)f(u(t))m0≤t≤1u′(0)=u′(1)=0是的正解存在性结果.
简介:研究了非多项式增长的变分泛函,利用Orlicz空间理论,得到了其在Orlicz-Sobolev空间中弱序列下半连续的充要条件,推广了关于多项式增长的变分泛函的相应结论。
简介:假设保险盈余服从跳跃扩散过程,保险资金投资标的包括无风险资产和风险资产两部分,其中股票价格过程服从CEV模型.本文研究了一种终值财富期望指数效用最大化的最优化比例再保险投资问题.利用随机控制理论技术,得到比例再保险投资过程的HJB方程,并从理论上推导出了最优投资策略和价值函数的显示表达式.