简介:设G是一个简单图,GiG,G1在G中的度定义为d(Gt)=∑v∈v(c)d(v),其中d(v)为v在G中的度数。本文的主要结果是:设G是n≥2阶几乎无桥的简单连通K3-free图,且G≌k1,n-1、Q1和Q2,若对G中任何同构于四个顶点路的导出子图I有d(I)≥n+2,则G有一个D-闭迹,从而G的线图L(G)是哈密顿图。
简介:证明了以Legendre多项式的极值点为插值结点组的Grünwald插值多项式在L2范数下是收敛的.
简介:基于作者先前提出的Lipschitz对偶思想,对非线性Lipschitz算子半群引入了若干Lipschitz对偶概念,得到了一类非线性Lipschitz算子半群存在生成元的特征刻画.这一结果直接将关于C0-半群如下结论推广到了非线性情形:C0-半群具有有界生成元当且仅当它一致连续.
简介:本文中,我们研究一类由极大Bochner—Riesz算子和Lipschtz函数A生成的多线性算子,获得了它的(Lp,上q)型,而且我们还将证明此算子从Lebesgue空间到Lipschtz空间、从Herz空间到Campanato空间和从Lp空间到Tribel—Lizorkin空间的有界性.