简介:一、填空题(每小题2分,共10分)1.分解因式:2x2-132=.2.计算:ax-y-ay-x=.3.当x时,分式5xx-1有意义.4.若3x+4m=5,则m=.5.如果a2+b2-2a-4b+5=0,则2-2b=.二、选择题(每小题3分,共9分)1.下列各式中,计算正确的有( ).①ab=ambm ②-5b-6a=-5b6a③(-2xy)2=2x2y2 ④(a-b)2=(b-a)2(A)1个 (B)2个 (C)3个 (D)4个2.在公式S=12(a+b)h,已知S、b、h,则a=( ).(A)2Sh-b (B)2Sh+b(C)h2S-b(D)h2S+b3.下列多项式中,不能用完全平方公式分解
简介:本文讨论了一类二维Fredholm方程的一种近拟解,通过利用二元函数的Taylor展开式,积分方程转化成一个关于未知函数及其相应的偏导数的线性代数方程组.数值例子表明了该方法的有效性.
简介:数学课堂教学的主要目标是使学生获取知识、形成技能、训练思维,而课堂提问是实现这一目标的重要手段.提问对于巩固学生知识、启发学生思维,开发学生潜能,培养学生素质都有重要的作用.课堂教学是一个动态的师生交流的过程.在这个过程中教学的时机与学生的兴奋点稍纵即逝,需要教师善于捕捉、及时引导,把握好发问的时机.超前的提问,学生不知所措,因无法求答而失去兴趣;滞后的提问,学生毫不费力就得到问题的答案,因缺少思维含量而单调乏味.“不愤不启,不悱不发”,教师要善于捕捉学生的“愤悱”之处,不失时机的用问题开启学生的思维之门.下面,以“正比例函数(第1课时)”为例,浅谈对数学课堂提问设计.
简介:运用二重B-值随机变量列{Xmn}在某阶矩一致有界条件下的性质和引理2.1的不等式,结合二重Dirichlet级数的成果,证明了在一定条件下,二重B-值随机Dirichlet级数+∞∑m=1+∞∑n=1Xmne-λms-μnta.s.几乎必然与二重Dirichlet级数+∞∑m=1+∞∑n=1E(||Xmn||)e-λms-μnt有相同的成对的相关收敛横坐标.
简介:根据Cauchy—Schwarz不等式,得到了C^2(a,b])空间中函数的二阶导数的若干新积分不等式.