简介:给出了Banach空间中线性离散时间系统一致与非一致多项式膨胀性的概念,使其在相应空间中范数的增长速度不快于指数型增长,并用实例阐释了二者的关系.借助于指数型膨胀性的研究方法,讨论了其非一致多项式膨胀性的离散特征.作为应用,利用Lyapunov函数给出了相应概念的充要条件.得到了指数膨胀性理论中一些经典结论在非一致多项式膨胀情形下的变形.
简介:本文研究了一类广义Liénard系统dx/dy=h[y-F(x)],dy/dt=-g(x)周期解的不存在性,得到了系统(1)具有多个奇点时不存在非平凡周期解的若干充分条件。
简介:考虑了一类p-Laplacian拟线性椭圆变分不等式问题,通过运用优化理论中的补偿法和Clark次微分性质,研究了这类椭圆变分不等式解的存在性.
简介:利用临界点理论中的山路引理,研究一类分数阶Kirchhoff型方程在次临界增长条件下非平凡解的存在性,进一步统一和丰富了已有文献的相关结果.
简介:证明了一类整系数齐次线性递归数列,当项数n是素数时,第n项与第1项的n次方模n同余.Fermat小定理,以及与Fibonacci数列、Perrin数列有关的一些定理,都可以看作是这一定理的推论.