简介:旨在引入神经网络算法以提高加速度计活动强度的预测准确性,以44名大学生(男女各22名)为样本,让其同时佩戴气体代谢分析仪CosmedK482和加速度计(Actigraph—GT3X)进行3类11项体力活动(每项活动5rain),使用Matlab7.0软件运用留一法交叉验证BP神经网络模型,通过其与Hendleman模型和Crouter模型在RMSE、Bias和B—A图上的横向比较评估其效度。结果显示3—18—1的三层神经网络模型(参数误差率O.001、初始学习率0.02、动量常量0.7)的RMSE为1.08,在B—A图上一致性区间之外的点占总数的4.3%、一致性界限差值的绝对值为2.7,每分钟活动强度(除骑行外)的分类准确性分别为84.3%(小强度)、83.2%(中等强度)和89.8%(大强度),神经网络模型在整体强度和各个活动项目强度的预测上的准确性均好于Hendleman和Crouter模型,并且在活动强度分类准确性上更优。未来应进一步探究机器学习中其它算法在该领域的应用,优化整合指标体系和各类模型之间的关系。
简介:观察75%VO2max强度有氧运动后人体红细胞形态及变形、积聚能力的变化.在受试者以75%VO2max强度蹬功率自行车1小时后,采其静脉血测定红细胞压积(Hct)、红细胞变形指数(TK)、聚集指数(RCA);扫描电镜(SEM)下观察红细胞形态变化.测出运动后红细胞压积、变形指数、聚集指数显著增高;红细胞形态由双凹圆盘状变为单侧凹陷边缘肿胀的Ⅰ型口形红细胞或凹陷加深另一侧隆起似礼帽状的Ⅱ型口形红细胞.认为75%VO2max强度有氧运动可使血管内红细胞聚集性增大,压积增高,红细胞失去正常形态,变形能力下降,从而影响其正常的携带氧气和二氧化碳的功能,导致有氧运动能力下降.
简介:研究目的:补充大豆低聚肽对大鼠小肠上皮组织形态学和IEL的影响,观察大豆低聚肽对高强度运动后肠道粘膜屏障的保护作用。方法:雄性SD大鼠40只,被随机分为灌喂水安静(A)组、灌喂大豆低聚肽安静(B)组、灌喂水运动(C)组和灌喂大豆低聚肽运动(D)组。大鼠在适应性喂养及膳食平衡1周后,进行实验及指标测试。结果:高强度运动后,大鼠肠道粘膜机械屏障出现轻微损伤和IEL减少,而补充大豆低聚肽后,与C组比较,D组大鼠小肠粘膜厚度增高33.36%(P〈0.05),小肠绒毛高度增高12.91%(P〈0.05),小肠粘膜隐窝深度增加32.84%(P〈0.05),IEL增加40.96%(P〈0.05)。结论:补充大豆低聚肽可改善高强度运动后小肠粘膜屏障功能。
简介:目的:研究不同强度运动训练对大鼠海马CA1区神经元凋亡的影响及其基因调控机制。方法:将大鼠分为对照组、中等强度运动组和大强度运动组,对大鼠进行为期8周的游泳训练,用DNA原位末端标记法检测海马神经元的凋亡,并用免疫组化的方法观察海马神经元中bcl-2、bax的免疫反应活性。结果:(1)大强度运动训练后,大鼠海马CA1区神经元凋亡显著增加而中等强度运动训练后,大鼠海马CA1区神经元凋亡不明显,海马神经元凋亡可能是大强度运动训练导致运动能力降低和中枢性运动疲劳的病理生理机制;(2)大强度运动训练后,大鼠海马CA1区神经元中bcl-2蛋白的表达显著下降,bax蛋白的表达显著增加。中等强度运动训练后,大鼠海马CA1区神经元bcl-2蛋白的表达显著上升。因此,大强度运动训练可抑制海马神经元bcl-2蛋白的表达而促进bax蛋白的表达,这可能是大强度运动训练导致大鼠海马CA1区神经元凋亡发生的基因调控机制,而中等强度运动训练可促使bcl-2蛋白的表达上升,抑制细胞凋亡。
简介:目的:观察不同运动强度对糖尿病大鼠血糖,血清中NO、eNOS含量及肾脏PAI-1的表达的影响,以期对运动预防糖尿病肾病的发生提供理论依据。方法:采用雄性SD大鼠进行高脂高糖膳食6周后,注射STZ,并通过测定血糖确定造模成功,将糖尿病大鼠随机分为4组,对照组(DMC),糖尿病运动1组(DME1,跑速为10m/min),糖尿病运动2组(DME2,跑速为15m/min),糖尿病运动3组(DME3,跑速为20m/min),运动组每天1小时跑台运动,每周5天,持续6周。结果:与安静对照组相比,运动组血糖极显著下降(P〈0.01);血清NO、eNOS显著或极显著上升(P〈0.05,P〈0.01);肾PAI-1含量显著或极显著下降(P〈0.05,P〈0.01),而运动组间差异不显著(P〉0.05)。结论:不同耐力运动可有效地控制血糖,提高血清NO,eNOS的含量,降低了肾脏PAI-1的表达,其中运动1组和运动2组更明显地控制了糖尿病的进一步发展。