简介:Toenhancetheexpressivepowerandthedeclarativeabilityofadeductivedatabase,variousCWA(ClosedWorldAssumption)formalizationsincludingthenaiveCWA,thegeneralizedCWAandthecarefulCWAareextendedtomulti-valuedlogics.Thebasicideaistoembedlogicformulasintosomepolynomialring.Theextensionscanbeappliedinauniformmannertoanyfinitelymulti-valuedlogics.Thereforetheyarealsoofcomputationalsignificance.
简介:Theset-valuedoptimizationproblemwithconstraintsisconsideredinthesenseofsuperefficiencyinlocallyconvexlineartopologicalspaces.Undertheassumptionofic-cone-convexlikeness,byapplyingtheseperationtheorem,Kuhn-Tucker's,Lagrange'sandsaddlepointsoptimalityconditions,thenecessaryconditionsareobtainedfortheset-valuedoptimizationproblemtoattainitssupereffcientsolutions.Also,thesufficientconditionsforKuhn-Tucker's,Lagrange'sandsaddlepointsoptimalityconditionsarederived.
简介:Inthispaper,weintroducematrix-valuedmultiresolutionanalysisandmatrix-valuedwaveletpackets.Aprocedurefortheconstructionoftheorthogonalmatrix-valuedwaveletpacketsispresented.Thepropertiesofthematrix-valuedwaveletpacketsareinvestigated.Inparticular,aneworthonormalbasisofL2(R,Cs×s)isobtainedfromthematrix-valuedwaveletpackets.
简介:Efficientalgorithmsareestablishedforthecomputationofbivariatelacunaryvectorvaluedrationalinterpolantsbasedonthebranchedcontinuedfractionsandanumericalexampleisgiventoshowhowthealgorithmsareimplemented,
简介:In[3],akindofmatrix-valuedrationalinterpolants(MRIs)intheformofRn(x)=M(x)/D(x)withthedivisibilityconditionD(x)|‖M(x)‖2,wasdefined,andthecharacterizationtheoremanduniquenesstheoremforMRIswereproved.Howeverthisdivisibilityconditionisfoundnotnecessaryinsomecases.Inthispaper,weremovethisrestrictedcondition,definethegeneralizedmatrix-valuedrationalinterpolants(GMRIs)andestablishthecharacterizationtheoremanduniquenesstheoremforGMRIs.OnecanseethatthecharacterizationtheoremanduniquenesstheoremforMRIsarethespecialcasesofthoseforGMRIs.Moreover,bydefiningakindofinnerproduct,wesucceedinunifyingtheSamelsoninversesforavectorandamatrix.
简介:Avarietyofmatrixrationalinterpolationproblemsincludethepartialrealizationproblemformatrixpowerseriesandtheminimalrationalinterpolationproblemforgeneralmatrixfunctions.Severalproblemsincircuittheoryanddigitalfilterdesigncanalsobere-ducedtothesolutionofmatrixrationalinterpolationproblems[1—4].Bymeansofthereachabilityandtheobservabilityindicesofdefinedpairsofmatrices,Antoulas,Ball,KangandWillemssolvedtheminimalmatrixrationalinterpolationproblemin[1].Onthe
简介:ApeaknormisdefinedforLpspacesofE-valuedBochnerintegrablefunctions,whereEisaBanachspace,andbestapproximationsfromasuntoelementsofthespacearecharacterized.Applicationsaregiventosomefamiliesofsimultaneousbestapproximationproblems.
简介:AnewkindofvectorvaluedrationalinterpolantsisestablishedbymeansofSamelsoninverse,withscalarnumeratorandvectorvalueddenominator.ItisessentiallydifferentfromthatofGraves-Morris(1983),wheretheinterpolantsareconstructedbyThiele-typecontinuedfractionswithvectorvaluednumeratorandscalardenominator.Thenewapproachismoresuitabletocalculatethevalueofavectorvaluedfunctionforagivenpoint.Andanerrorformulaisalsogivenandproven.
简介:Somenonlinearapproximants,i.e.,exponential-suminterpolationwithequaldistanceoratorigin,(0,1)-type,(0,2)-typeand(1,2)-typefraction-sumapproximations,formatrixvaluedfunctionsareintroduced.Alltheseapproximationproblemsleadtoasameformsystemofnonlinearequations.Solvingmethodsforthenonlinearsystemarediscussed.Conclusionsonuniquenessandconvergenceoftheapproximantsforcertainclassoffunctionsaregiven.
简介:Thecomputationalproblemsoftwospecialdeterminantsareinvestigated.Thosedeterminantsappearintheconstructionofthefunction-valuedPade-typeapproximationforcomputingFredholmintegralequationofthesecondkind.Themaintooltobeusedinthispaperisthewell-knownSchurcomplementtheorem.
简介:BymakinguseofThiele-typebivariatebranchedcontinuedfractionsandSumelsoninverse,weconstructafewkindsofbivariatevectorvaluedrationalinterpolonts(BVRIs)overrectangulargridsandfindoutcertainrelationsamongtheseBVRIssuchasboundaryidentityandduality.
简介:Inthisarticleweintroducethevectorvaluedsequencespacem(Eκ,φ,A),associatedwiththemultipliersequenceA=(λκ)ofnon-zerocomplexnumbers,andthetermsofthesequencearechosenfromtheseminormedspacesEκ,seminormedbyfκforallkεN.Thisgeneralizesthesequencespacere(φ)introducedandstudiedbySargent.Westudysomeofitspropertieslikesolidity,completeness,andobtainsomeinclusionresults.Wealsocharacterizethemultiplierproblemandobtainthecorrespondingspacesdualtom(Eκ,φ,A).Weprovesomegeneralresultstoo.
简介:1IutroductionManykindsofmatrix-valuedrationalinterpolationorapproximationproblemshaveappearedinrecentyears([1-7]).MotivatedbyGraves-Morris’Thiele-typevector-val-uedrationalinterpolants[6],GuChuanqingandChenZhibing[7]discussedthematrix-valuedrationalinterpolantsinThiele-typecontinuedfractionform,withmatrix-valuednu-