简介:Ingasturbineengines,laminar-turbulenttransitionoccurs.However,generally,theturbulencemodelstodescribesuchtransitionresultsintooearlyandtooshorttransition.Combiningaturbulencemodelwithadescriptionofintermittency,i.e.thefractionoftimetheflowisturbulentduringthetransitionphase,canimproveit.Bylettinggrowtheintermittencyfromzerotounity,startandevolutionoftransitioncanbeimposed.Inthispaper,amethodwhereadynamicequationofintermittencycombiningwithatwo-equationk-ωturbulencemodelisdescribed.Thisintermittencyfactorisapremultiplicatoroftheturbulentviscositycomputedbytheturbulencemodel.FollowingasuggestionbyMenteretal.[1],thestartoftransitioniscomputedbasedonlocalvariables.
简介:提出了一种基于改进蚁群算法的动态K-均值聚类算法思想,该算法首先利用蚁群算法的较强处理局部极值的能力,动态地确定了聚类数目和中心,然后利用蚁群聚类得到的结果,再进行K-均值聚类弥补蚁群算法的不足。两者有机结合起来可以寻求到具有全局分布特性的最优聚类,实现了基于改进的蚁群聚类算法分析。
简介:k均值算法是一个常用的局部搜索算法,它的主要缺陷是容易陷入局部极小,并且该局部极小解与全局最优解往往有很大的偏差.本文提出一个基于K-均值的迭代局部搜索文档聚类算法.该算法以k均值算法所得到的解作为初始解,从该初始解开始作局部搜索,在搜索过程中接受部分劣解.当解无法改进时,算法对所得到的局部极小解做适当强度的扰动后进行下一次的迭代,以跳出局部极小,从而拓展了搜索的范围.实验结果表明该算法对文档数据集聚类的正确性达99%以上.
简介:现代企业间对于客户资源的争夺越来越趋于白热化,争夺的根本目的就是为了在保持现有客户的基础上再去争取更多的新客户加入,营销手段也从传统模式转变为个性化,以及一对一的营销方式来满足客户,从而使公司获得更大的收益,新的营销模式的实行的核心问题就是客户的有效甄别.客户甄别细分的核心基础是对客户的消费特征数据进行分析,通过数据挖掘中的聚类分析方法能够完成把隐藏在数据中的客户特征分类出来,进而实现对客户群体的特征划分.经典的K-均值聚类算法对最初选取的初始聚类中心极其敏感,该文采用改进的K-均值聚类算法实现了对某电子商务网站客户消费行为的聚类划分,且对划分后的集群进行了完整的数据分析,根据分析结果实现了企业对客户的差异化服务,从而提高了客户的满意度,增强了企业的市场竞争力.